高校生を対象とした人工知能に関する授業の実践
高大連携授業「人工知能のおはなし」を通じて
間所洋和1, 寺田裕樹2

1 秋田県立大学システム科学技術学部機械知能システム学科
2 秋田県立大学システム科学技術学部電子情報システム学科

コンピュータは計算する機械から考える機械に進化している。将棋ソフトウェアがプロ棋士に勝ち越したのは、象徴的な出来事であった。掃除ロボットやペットロボットの普及は、人工知能という技術が応用され、社会に受容されてきたことを意味している。このような背景のもと著者らは、高大連携授業の一環として高校生を対象とした授業を開設した。また、レゴのロボット教材であるマインドストームズを用いてロボットアームを構築し、学習内容を実践した。本稿では、人工知能の基礎的領域から著者らが研究対象としている機械学習や知能ロボットについて、高大連携授業での取り組み例を報告する。

キーワード：人工知能、機械学習、ロボット、心、マインドストームズ

ダートマス会議において、Artificial Intelligence（AI）という専門用語が提唱されたのが、人工知能の出発点となっている（McCarthy, 2006）。その後、半世紀以上の時を経ても、AIは魅力と輝きを失うことなく、脈々と研究が続けられている。AIは社会に対して何度もインパクトを与えてきた技術である。AIの実用化は、専門家の意思決定を支援するエキスパートシステムが第一歩であった。1997年には、AIを搭載したコンピュータがチェス世界チャンピオンに勝利した。近年では、コンピュータ将棋ソフトウェアがプロ棋士との五番勝負に勝ち越して、再び社会の注目を集めている。その他にも、スマートフォン向け秘密アプリのSiri、東京大学合格を目指した東ロボくん、コールセンターの回答業務を支援するWatsonなど、応用事例は枚挙にいとまがない。

著者らは、平成25年11月に「新しい情報のかたちAR活用事業とその未来」と題して公開講座を開催した（関所, 2014）。秋田県横手市と秋田市の2会場で開催し、130名程度の参加があった。拡張現実（Augmented Reality: AR）を支える技術に焦点を当てた一般市民向けの講座であり、本内容を高校生向けに再編して、平成26年度前期の高大連携授業において、「拡張現実の世界〜ARで知る新しい情報のかたち〜」というテーマで開催した。この時に受講した高校生から、続編を開催してほしいという要望があり、AIに関心を寄せた本授業の開催に踏み切った。

高大連携は、中央教育審議会が1999年に提出した答申「初等中等教育と高等教育との接続の改善について」が発端とされている（勝野, 2004）。現在は、都道府県単位で活発に取り組まれている。秋田県では、秋田大学内に事務局を置く大学コンソーシアムが高校連携授業を担当している。活動の拠点は、県秋田市秋田駅前に立地するカレッジプラザにある。大学コンソーシアムの目的は、県内全ての高等教育研究機関が加盟しており、各機関の特色に応じて様々な授業が開催されている。秋田県における高大連携授業については、英語授業を事例に

責任著者連絡先：関所洋和 〒015-0055 秋田県由利本荘市上谷字梅老ノ口844 公立大学法人秋田県立大学システム科学技術学部機械知能システム学科 E-mail: madokoro@akita-pu.ac.jp
表1 シラバスに掲載した時間割

<table>
<thead>
<tr>
<th>第1講</th>
<th>AIにまつわるコンピュータ技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>第2講</td>
<td>AIとロボットの深い関係</td>
</tr>
<tr>
<td>第3講</td>
<td>レゴで作るAIロボット（ハードウェア編）</td>
</tr>
<tr>
<td>第4講</td>
<td>レゴで作るAIロボット（ソフトウェア編）</td>
</tr>
</tbody>
</table>

図1 授業の様子。

表2 第1講と第2講のアジェンダ

<table>
<thead>
<tr>
<th>第1講「AIにまつわるコンピュータ技術」</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 人工知能とは</td>
</tr>
<tr>
<td>2. 人工知能の研究</td>
</tr>
<tr>
<td>3. かなり大雑把なAIの歴史</td>
</tr>
<tr>
<td>4. ダートマス会議</td>
</tr>
<tr>
<td>5. チューリングテスト</td>
</tr>
<tr>
<td>6. AIプログラミング</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>第2講「AIとロボットの深い関係」</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ロボットとは</td>
</tr>
<tr>
<td>2. ロボットの身体性</td>
</tr>
<tr>
<td>3. ロボットの知覚</td>
</tr>
<tr>
<td>4. ロボットの学習</td>
</tr>
<tr>
<td>5. ロボットの記憶</td>
</tr>
<tr>
<td>6. ロボットと心</td>
</tr>
</tbody>
</table>

学会分野であるAIは、情報科学のみならず、認知科学や哲学、心理学等を対象とするため、学問領域は幅広い。人工知能学会編集の人工知能学事典（人工知能学会、2005）は、996ページに及ぶ巨著である。大学の講義に合わせて15章に構成されている入門書（谷口、2014）もあるが、複雑な数式や難解な専門用語が混じっている。一方、高速連携授業の標準授業時間は90分間×5回に設定されている。このため、通常の大学の講義のような全分野を網羅する授業は難しい。したがって本授業では、AIとの関連性が強いコンピュータ技術とロボットに焦点を絞って、AIという広大な世界への入り口という位置付けにした。さらに座学は思い切って2回のみにし

で、後半の2回はロボットの身体性とAIについて学習する実践型の演習とした。シラバスに掲載した授業の時間割を表1に示す。実践演習ではロボットアームを構築し、プログラミングとパラメータ調整の後、将棋の駒を指す動作までを実装した。なお出席の状況より、第2講と第3講は入れ替えて実施した。授業の様子を図1に示す。講義では、気性に質問や議論ができるように、会議形式のテーブル配置にした。実践演習では、2グループに分かれてロボットアームを構築した。

以下では講義録として授業内容の一部を記載するとともに、実践演習として実施したロボットアーム構築の様子を紹介する。第1講と第2講のアジェンダを表2に示す。受講者にはスライドのコピーを配布し、授業は基本的にアジェンダにした順番で進めた。本稿は講義録という位置付けであるが、口語体を文語体に改めて、冗長性の少ない記述になるように努めた。また、論拠となる文献を追加し、客観性と厳密性に配慮した。なお、授業は可能な限り平易な表現での説明に心掛けつつ、最先端の話題も盛り込んだ。本稿の最後では、4回の授業を振り返りつつ所感を述べるとともに、今後向けた課題について整理する。
AIにまつわるコンピュータ技術

AIという畳畳（こわく）の的で魅力に満ちる専門用語が提唱されたのは1956年である。米国ニューハンプシャー州のダートマス大学で開催されたダートマス会議において、人間の知能はいかにしてコンピュータで再現し模倣できるのかテーマに、第一線の研究者による議論が交わされた（McCarthy, 2006）。

本章では、AIの定義とそれに基づく研究の進展について考察する。AIは「機械による知能」を指し、その基本的な定義は「機械の知能を持つことができ、知能を持つ機械を作りたいという人間の知能を模倣した研究」と位置付けられている。また広義には、「人間の知能の解明」と位置付けられており、これは認知科学の一分野であるかぎりは、人間は様々な環境で多様な知識を学習し習得する。そしてそれらを推論と結び付けることで、知的な行動を取る。このため、AIには「知能を持ち知的な振る舞いを模倣する機械には、知識がなければならない」という前提が導かれ、知識の表現とその利用から研究が進められている。

知識を扱うAIの研究として、エキスパートシステムの開発が行われた。エキスパートシステムとは、専門家（expert）の意思決定の模倣を目指したシステムで、医療や法律、金融分野での応用が試みられた。直接的に知識を持たせることを目的とした研究として、知識システムがある。エキスパートシステムやコンサルティングシステムの研究が、この分野に該当する。知識の獲得から表現までの対象としており、暖昧な知識の利用に関しても研究対象となっている。その他では、問題解決、推論、計画立案、コンピュータビジョン、自然言語処理、学習などが主要研究分野となっている。この中で著者らは、コンピュータビジョンと学習について研究を進めている。コンピュータビジョンでは、物体や環境の認識、理解を対象としている。学習では、教師なし学習に軸を置

図2 チューリングテストの模式図。
そして取り組んでいる。いずれも人間共生型の自律行動型ロボットへの応用を目指しているが、この内容については次節の第2講に譲ることにする。

AIの歴史を振り返ると、1980年に米国人工知能学会が設立され、学術研究の土台が築かれた。この頃から欧米諸国では、国家プロジェクトとしてAIの研究が進められた。日本では、1982年から通商産業省（当時）が主導する第五世代コンピュータプロジェクト（Uchida, 1982）が10ヵ年計画で実施された。この間、1986年に我が国においても人工知能学会が発足した。1997年、AIがチェスの世界で大勝利を納め、世界で話題になった。AIを搭載したIBMのコンピュータDeep Blueが、チェスの当時の世界チャンピオンのガルフ・カスパロフに2勝1敗3引き分けで勝利した（Campbell, 2002）。2000年に入り、インターネットの爆発的普及とともに、ウェブ上でのAIの利用が進んだ。インターネットに蓄積された膨大データから、価値のある情報を引き出すための手法として活用されている。最近の出来事としては、2012年にコンピュータ将棋ソフトウェアが元プロ棋士の米長昇雄全日本棋に勝利した（米長、2012）。さらに2013年以降は現役プロ棋士との五番勝負において、2年連続で勝ち越している。

知能はコンピュータのソフトウェアとして実装され、ソフトウェアはプログラミング言語によって記述される。AIのプログラミングでは、抽象的な記号を定義し処理するために専用の言語を使われていた。知能や知能は、その構造が複雑かつ曖昧で、未解明な部分も多い。このため、AIのプログラミング言語には、対象世界の非整定性を記述する仕組みが求められる。また、演算や演算には複雑性と多様性が伴う。パターンマッチングや演算、帰納、推論などの多様な論理処理が効率的に記述できなければならない。さらに制御の非決定性と柔軟性を扱うために、再帰的処理やデッドロック、発見的制御機能が求められる。古典的には、LISPやPrologに代表されるAI専用言語が使われていた。しかしながら最近では、このような特殊な言語ではなく、汎用性の高いC言語やJavaが使われている（小高、2006）。

プログラミングにおけるアルゴリズムの複雑性に関しては、ゲームを例に探索空間が比較できる。将棋や囲碁、オセロ、チェスなどは、二人零和有限確定完全情報ゲームと呼ばれる。これは、「二人」で対戦して、相手の利得の「和」が「零」になり、各手の組み合わせ総数は「有限」で、偶然性が入る余地のないため「確定」であり、相手の手が見える「完全情報」のゲームである。二人零和有限確定完全情報ゲームの先読みは、AIの研究として早くから取り組まれていたもので、組み合わせの総数が多いため、ゲームの限られた時間内に完全な最善手を読むことは困難となる。探索空間は、オセロが10の60乗、チェスが10の120乗、将棋が10の220乗、囲碁は10の360乗となる。よく用いられる数値の例であるが、宇宙の素粒子の数が10の80乗程度なので、いかにこの探索空間が広いかが理解できる。

もうひとつ例を挙げると、エルノー・ルピックが1974年に考案し、1980年代に日本でもゲームになったルピックキューブは、4325京通りのパターンがある。これは1面が3×3パターンの通常ルピックキューブである。ルピックキューブに関しては全探索でなく、解き方（解へ方）の手順は解明されているが、どのようなパターンからも最短の手数で揃えるアルゴリズムの探求が続けている。

Googleは自社のクラスタコンピュータを用いて、ルピックキューブがいずれの局面パターンからでも20手で解けることを証明した。正式な学術論文にはなっていないが、ソースコードが公開されているので、Google社が用いたクラスタコンピュータと同等のコンピュータを使えば確認できるようである。

AIとロボットの深い関係

ロボットとは、チェコスロバキア（当時）の劇作家カレル・チャベックが戯曲の中で作り出した造語である（Capek, 1920）。機械文明の発達と乱用に対する批判をテーマにした戯曲であり、チェコ語で強制労働を意味する「robotka」や強制労働者を意味する「robotnik」などの語源がある。この戯曲は1920年に発表されたので、ロボットには1世紀近い歴史がある。産業用ロボットは、この名の通りの機械である。人間に代わって、単純で危険な作業を24時間休むことなく繰り返してくれる。
図3 古典的ロボットのモデル。

図4 包括行動アーキテクチャ。

時代とともに、言葉の意味は変化する。欧米諸国ではロボットと言えば製造労働者というイメージが強く残っていたが、日本では全く違う。ロボットに対する一般的なイメージを大きく変えたのは、漫画の影響が大きかったと言われている。手塚治虫が描く鉄腕アトム、藤子不二雄のドラえもん、そして鳥山明のドラえもん、この三大キャラクターと日本人のロボットに対するイメージを大きく変えたと著者らの世代は認識している。これらのキャラクターにより、ロボットの擬人化が進んだ。愛嬌のある容姿が、人間とのコミュニケーションを円滑にしてくれる。また時には、人間を助けることができる英雄である。もちろんこれは架空のロボットであるが、研究者や技術者は、このようなロボットが活躍する未来社会に夢を膨らませ、研究開発に取り組んできた。

特許庁が定義するロボットは表3に示す。この定義は、特許出願技術動向調査において調査対象を設定するために使われている。第一項に「マニュピュレーション機能を有する機械」とある、定型作業を繰り返す産業用ロボットが、主な対象となる。このようなロボットでは、位置補正のセンサリングは行われているが、基本的にはプログラムで事前に決められたパターンの動作を繰り返すだけである。単純作業を代替する機械は、チェッケックが名付けたロボットとして十分である。続く第二項には「移動機能を持ち、自ら外部情報を取得し、自己の行動を決定する機械」とある。産業用ロボットは限定された環境内で稼働するけれども、人間が存在する一般環境は時々刻々と変化する。このような環境において、例えばロボットが自律的に目的とする場所まで移動するような場合には、ロボット自身が外部をセンシングし、様々な外部情報を取得しなければならない。さらに取得した情報から、自己の行動を即時決定する能力が求められる。平成18年に、特許
表3 特許庁によるロボットの定義

1. マニュピュレーション機能を有する機械。
2. 移動機能を持ち、自ら外部情報を取得し、自己の行動を決定する機能を有する機械。
3. コミュニケーション機能を持ち、自ら外部情報を取得して自己の行動を決定し行動する機能を有する機械（平成18年追加）。

図5 包筆者らによる機械学習法の分類および勢力地図。

コンピュータの処理速度と記録容量の進歩により、データから学習を行う機械学習法が用いられるようになった。あらかじめ処理を設計して登録しておくのではなく、大量のデータから関係性を自動的に学習する処理方式である。機械学習法は大別して、教師あり学習、教師なし学習、半教師あり学習、強化学習の4種類的方式がある。教師あり学習では、入力に対する正しい出力を教師信号として学習する。つまり、学習の学習とする。内部モデルの出力は教師信号の誤差を小さくするように学習が進められ、教師あり学習は安定した精度が得られることから、パターン認識分野で最も活発に研究され、利用されている。教師なし学習は、自律的にルールを見つけるように学習する。学習時に、正しい出力となる教師信号は与えられない。つまり未学習データでの学習となる。入力データの特徴を分布や統計量に着目して、データを分解したり、高次元データを圧縮したりする学習となる。半教師あり学習では、教師信号が部分的与えられる。半教師あり学習は、教師あり学習における教師信号不足の対策として考案された。学習用のデータセットの作成に伴う負荷が低減されるとともに、教師あり学習に拮抗する安定した精度が得られるのが特長である。強化学習は、教師信号は与えられないが満足の出力に対して報酬信号が与えられる。報酬を良くするように、つまり多くの報酬が獲得できるように、探索的に学習を進める。

各学習方式は、脳部とも対応した関係にある（Doya, 1982）。脳は、下オリーブ核から運動制御ではなく、認知機能にも関与している。脳基底核は、中脳の黒質ドーパミン細胞から送られる報酬信号をもとにした強化学習を担い、ドーパミンに依存した可塑性を持っている。大脳皮質は、相互作用回路のダイナミクスによる教師なし学習になる。これはヘブイ型の可塑性に位置
付けられている。

機械学習法には多種多様なアルゴリズムが提案されている。筆者らの経験に基づく分類を図6に示す。これまで教師あり学習が大帝国を築いていた。特に、カーネル関数により高次元空間での高い識別性能を有するサポートベクターマシン、弱学習器を大量に組み合わせたブースティング、ベイズの定理に基づくグラフィカルモデルのベイジアンネットなど、高い識別性能を示すアルゴリズムが多数提案され、大勢力を作っていた。一方、教師あり学習では、学習データセットの構築がポトルネックとなっていた。半教師あり学習は、学習データセットの量的側面を解決するアプローチである。これにより、未ラベルデータと組み合わせて学習できるようになった。教師なし学習は、未ラベルデータのみで学習を行うため、これまでは精度の面で教師あり学習に劣農を押していった。この勢力図が近年、塗り替えられようとしている。ジュフリー・ハイントンが提案した深層学習（Hinton, 2006）は、未ラベルデータから特徴を自動抽出し、データの潜在的な構造を階層的な情報表現により学習することができる。

深層学習を用いてGoogleは、10億（10の9乗）の接続を持つ大規模ネットワーク（Le, 2012）を構成し、約1千万枚の未ラベル画像を用いて学習した。その結果、81.7%の精度で顔を検出する顔ニューロンと、74.8%の精度で猫を検出する猫ニューロンの自己形成に成功した。ただし、人の脳の神経細胞は10の14乗の接続を持ち、単純に比較しても5桁の差がある。それだけ、人の脳は大規模なニューラルネットワークから形成されていることを意味している。

本研究の最後に、ロボットと心について話し合った。「ロボットに心は必要か？」「心とは何か？」という2つの質問をして、受講者全員（第3講は2名欠席で6名）に順に答えてもらった。前者の質問に対しては、6名中5名が不要という意見であった。理由を聞いたところ、心には善悪の両面があるので、悪心を持った場合、人間に対して危険を加える危険性があるということであった。この意見を2番目に答えた生徒が言ったため、続く生徒たちは、この意見に賛成する傾向にあった。人間の心の対応する

図6 構築したロボットアーム

善悪が簡単にコントロールできないように、仮にロボットに心を持たせることが可能になったとしても、善の心のみにすることは難しいのかもしれない。一方、現在のロボットには、特許庁の第三の条件にあたる、コミュニケーション機能が求められる。仮にコミュニケーション能力を獲得できたとしても、その一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションとなる。このようなコミュニケーションを考える必要があると考えられる。一方で心が不要となると、心のない状態でのコミュニケーションなる。
図7 ルービックキューブを解くロボットの実演。

ンドストームズを利用してきた。当該科目では、2モータによる独立駆動方式のラインストレースロボットの構築を通じて、センサ、モータ、組み込みプログラミング、リアルタイム処理と幅広い技術の習得を目的としていた。また、本学で実施している学生自主研究においても、マインドストームズによるロボットの構築には多数の取り組み事例がある。

身体性を持った知能として、ロボットの構築は、AIを実現するための手段のひとつである。このため、ロボットの構築は、AIへの興味を喚起する絶好的な機会と考えた。著者らは当初、ルービックキューブを解いて得られるロボットの構築を計画していた。しかしながら機構やプログラミングが非常に複雑であるため、授業時間数との関係から実施にはハードルが高いという結論に至った。このため、本学の学生自主研究で作成したルービックキューブロボットを持ち込み、実演を実施した。

実演の様子を図7に示す。このロボットには、2個のセンサと3個のサーボモータが使われている。センサは、キューブの色を読み取るカラーセンサと回転台に置かれたルービックキューブを検知する距離センサから構成される。サーボモータは、回転台の駆動、ルービックキューブの回転、そしてカラーセンサの移動に用いられている。カラーセンサでキューブの6面のパターンを読み取った後、解く手順を計算する。計算完了後、2個のサーボモータでキューブを部分的に回転させてパターンを揺る。これで、カラーセンサは点情報なので、全54キューブ（9個×6面）の色の読み取りには時間を要する。また、環境光やキューブの微妙な位置変動の影響を受け、本ロボットはこれまで、著者らの研究室でしか動作させたことがなかった。このためクレッジプラザの講義室では、何度もスキャンエラーが発生した。しかしながら人間がルービックキューブを解く場合と同じで、一度パターンが読み取れると、最短の手順で揺ることができる。なお、モーリー上での移動させるだけなので、色パターンの再読み込みは必要としないという特長がある。

ソフトウェアの構築に関しては、ハードウェアとソフトウェアの構築に要する時間を、1対1の割合に設定した。ハードウェアの構築は、レゴ社から提供されている公式組み立てマニュアルを参考にしながら、モジュールごとに分担して取り組ませた。組み立て時間に多少のばらつきはあったものの、最後にモジュール同士を結合して完成させることができ、動作不良に結びつくような組み立ての不具合や間違いはなかった。マインドストームズはマニュアルで整備されていることに、各パーツの完成度が高いことから、初めての利用者にとっても取扱がしやすかった。なお全生徒とも、マインドストームズは初めての経験であった。

ソフトウェアの構築に関しては、プログラミング環境の関係上、順番に取り組んでもらった。またグループ全員で相談しながら、代表者がパソコンに向かってプログラムを入力するという分担で取り組んだ。構築したロボットは3軸のロボットアームである。将棋指しロボットを目指して、将棋の駒を掴むという動作を、モータ制御のプログラミングによって実現した。行動パターンの流れを作り、パラメーターを調整しながら、把持動作を実現することができた。

授業の所感と今後に向けて

高大連携授業は、高校教育から大学教育への架け橋となっている。高校では学べないことを、早稲田大学で学べる絶好の機会である。一方で大学に入ってから学べることを、急いで学ぶ必要はないと著者ら
表 4 受講者アンケートの自由記述欄（本人が記載したまま表記）

人工知能についての知識が広がり、とても勉強になりました。最初の時は難しいかなと思っていましたが、やっていくうちにとても楽しくなり、のめり込みました。またこのような機会があれば参加したいと思います。

今回は、前期同じ教授の授業が面白かったので受講しました。今回もとても面白かったです。最終日が行事と重なり、参加できなくなってしまったのがとても残念ですが、新しいことを知ってよかったです。

AIについてもロボットのことについて理解がでできてよかった。また別の授業を受けたいと思った。

は考えている。このためテーマを設定する際には、高校と大学を接続しつつ、長い視点で学修や研究に取り組む対象となることに配慮した。AIは将棋のプロ棋士の棋力に迫る勢いで進化している一方で、認知・認識能力という側面では 3 歳児以下と言われている。また学際的な分野であるため、情報科学ののみならず、哲学や心理学にも興味を発展できると考えた。ただし工学系の大学教員である著者らが実施する授業なので、専門となる機械工学や電子工学へと着地できるように、ロボットアームの構築という演習課題を通じて、身体性を持った知能としてハードウェアの構築からソフトウェアの実装までを含めた実践的な授業とした。

平成 26 年度後期高大連携授業の受講生の募集は、2014 年 8 月 20 日から 9 月 20 日までの 1 ヶ月間に亘って行われた。本授業には高校生 8 名の応募があった。学年は 1 年生 2 人、2 年生 5 人、3 年生 1 人であった。地域別では、秋田市内の高校 2 校から 6 名、能代市内の高校 2 校から 2 名であった。会場は秋田駅前のカレッジプラザの小講義室を使った。能代市内の高校生 2 名は、電車や父兄の車での送迎により、遠方から受講した。秋田県は全国で 6 番目に広い面積を持っていたため、秋田市以外の高校生には受講のための移動の負担が大きい。本授業は 11 月の毎週木曜日に、4 回に分けて実施した。遠方から来る受講生への配慮を考えると、週末を利用して集中的に実施する方が望ましいようである。なお 2014 年に実施された 54 授業のうち、25 授業が週末または長期休み中に集中開催されている。実施時期についてはさらなる検討が必要であった。11 月は修学旅行のシーズンであるが、県内の高校も、この時期に修学旅行が集中している。このため、2 年生に関じては、本授業と修学旅行が重なってしまい、欠席が目立った。高校の行事予定の情報を十分に得てから、開催時期を設定する必要があった。

本授業は 4 回シリーズとして実施したが、各回での授業内容の独立性を高めるように心掛けた。これにより、欠席した場合でも、その回だけで内容が十分に理解できるように配慮した。ロボットアームの構築に関しても、ハードウェアの制作とソフトウェアのプログラミングを切り分けることにより、独立性を確保した。少数選での授業であったことから、一方の知識の伝達ではなく、気軽に会話しながら両方向で授業を進める方式を取った。今回の受講生は、コンピュータ部や科学部に所属しており、コンピュータの基本アーキテクチャやプログラミングに関しても予備となる知識を十分に持っていた。特にゲームに関して詳しい生徒がいて、目を輝かせるかに熱く語っていた姿が印象的であった。なお、受講者アンケートでは、83.3%の生徒が「科目分野の関心が高まった」と回答している。関心が高まった理由としては、「志望分野と一致したから」が 66.7%であった。その他としては、「奥深さを感じたから」というコメントもあった。アンケートの最後の自由記述欄には、表 4 に示すような感想や意見が書き添えていた。講師を務めた著者らにとって、心温まるフィードバックであった。

ロボットは、機械、電子、情報を横断する総合学問である。加えて、AI による知能化には、哲学や倫理学、心理学などの素養も求められる。今回は、知能を実現するためのプラットフォームとしてのコンピュータ技術に始まり、身体性を持った知能としてのロボットについて、著者ら独自の見解を、高校生にもわかりやすく理解できることに配慮して授業を
実施した。ロボットと心についての議論では、ロボットが心を持つことに負の印象を持っている生徒が大半を占めていた。機械工学と電子工学を専門とする著者らには予想外の反応であったが、大学の研究者として、最低限の夢は伝えたはずである。それをどのように感じるかは、個々人の心次第と思っていく。

文献

Doya, K. (1982). What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex. Neural Networks, 12, 961-947.

人工知能学会編集（2005）. 『人工知能学会史』 共立出版.
勝野健彦（2004）. 『高大連携とは何かー高校教育から見た現状・課題・展望ー』 学事出版.
小高知宏（2006）. 『はじめてのAIプログラミング〜C言語で作る人工知能と人工無能〜』 オーム社.
間所洋和, 寺田裕樹（2014）. 「拡張現実技術の最先端と秋田での活用案：新しい情報のかたち」『秋田県立大学ウェブジャーナル A』（地域貢献部門） 1, 19-32.
松尾豊（2013）. 「レクチャーシリーズ『AIとは』にあたって」 『人工知能学会誌』 28(1), 138.
高階悟（2014）. 「英語の高大連携授業への挑戦」 『秋田県立大学総合科学研究彙報』 15, 63-69.
谷口忠大（2014）. 「イラストで学ぶ人工知能概論」 講談社.
米長邦雄（2012）. 「われわれが聞いた～コンピュータ棋戦のすべてを語る～」 中央公論新社.

平成26年11月30日受理
平成27年1月7日受理
A Practical Lecture on Artificial Intelligence for High School Students
A Tale of Artificial Intelligence as a Joint Lecture between High schools and Universities

H. Madokoro¹, Y. Terata²

¹ Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University
² Department of Electronics and Information Systems, Faculty of Systems Science and Technology, Akita Prefectural University

This paper presents a case lecture for high school students on artificial intelligence that includes machine learning and intelligent robotics as our research target. The computer has evolved from a calculation machine to a thinking machine. It is a symbolic fact that shogi software won professional players. Cleaning and pet robot applications indicate that artificial intelligence is accepted by our society as matured technology. We have held a lecture on artificial intelligence for high school students as a joint education program between high schools and universities. Furthermore, we have practiced a lesson to build a robot arm using Mindstorms by LEGO.

Keywords: artificial intelligence, machine learning, robots, mind, LEGO Mindstorms

Correspondence to: Hirokazu Madokoro, Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshino-Nakano, Akita, Akita 010-0195, Japan. E-mail: madokoro@akita-pu.ac.jp