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Abstract

Image inpainting refers to the process of restoring the missing or damaged regions in an

image. The technology of image inpainting has received considerable research interests in

the last several decades because of its numerous applications in various fields. And image

inpainting method based on sparse representation is a main branch of the technology.

One aspect of this thesis considers the image inpainting based on sparse representation,

which is one of the technologies of image inpainting. In the image inpainting method

based on sparse representation, the dictionary is very important which directly affects

the inpainting results. In order to make the filled target region is visually consistent

with the source region, we directly use the patches in the source region to construct the

dictionary. Furthermore, if all patches in the source region are used to construct the

dictionary, there will be lead to some unrelated patches for the target patch which may

affect the inpainting result. Therefore, in the proposed image inpainting method based on

sparse representation, we adapt the histogram similarity comparison method to compare

the similarity between the target patch and the patches from the source region. And

then use the similar patches to generate the related dictionary and histogram dictionary.

Experiment results have shown that the proposed methods based on related dictionary

and histogram dictionary achieve a better image inpainting result than the method based

on original dictionary.

Another aspect of this thesis is the image fusion for multifocus image and medical

image. Specially, multifocus images are obtained from the same camera with different

focus point, while the medical images are obtained from different modalities, e.g., computer

tomography (CT) and magnetic resonance imaging (MRI) images. For multifoucs image

fusion, a multifocus image fusion method is proposed using a structure-preserving filter

in spatial domain. In particular, the latest recursive filter (RF) is introduced as the
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structure-preserving filter in the proposed spatial domain method. Moreover, a focused

region detection method is presented to determine initial weight maps based on an average

low-pass filter. Then a fused image can be generated by the final weight maps, which

are obtained by using the RF to refine the initial weight maps and can well preserve

the structures of source images. Experimental results show that the proposed method

is superior to the state-of-the-art multifocus fusion methods in terms of subjective and

objective evaluations.

For medical image fusion, a transform domain method using segment graph filter and

sparse representation is proposed. Medical image fusion is to generate a single image from

different multimodal images. As the human visual system (HVS) is sensitive to the edge

information of source images, edge information should be integrated into the fused image

as much as possible. In this thesis, by using the so-called segment graph filter, i.e., an

edge-preserving filter based on the segment graph, the source images can be decomposed

into base images and detail images. Then the base images are fused by a fusion rule

based on normalized Shannon entropy while the detail images are fused by using a sparse

representation-based fusion method. Finally, the resultant fused image is computed from

combining the fused base image and fused detail image. Compared with other edge-

preserving filters, a segment graph filter can well preserve the edge. Experiment results

indicate that the proposed method can achieve the fusion performance of the state-of-the-

art methods in both subjective visual performance and objective quantification.
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Chapter 1

Introduction

1.1 Background of Image Inpainting

The modification of images in a way that is non-detectable for an observer who does

not know the original image is a practice as old as artistic creation itself. Medieval artwork

started to be restored as early as the Renaissance, the motives being often as much to

bring medieval pictures ”up to date” as to fill in any gaps [78, 25]. This practice is called

retouching or inpainting. Image inpainting is a data completion problem that aims to

recover or fill in missing information in a degraded image. And Bertalmio et al. firstly use

the image inpainting in image processing in [7]. Image inpainting has been widely inves-

tigated in the application of digital effect (e.g., object removal), image restoration (e.g.,

scratch or text removal in photograph), image coding and transmission (e.g., recovery of

the missing blocks) and so on [89]. All algorithms are guided by the assumption that pixels

in the known and unknown parts of the image share the same statistical properties or ge-

ometrical structures. This assumption translates into different local or global priors, with

the goal of having an inpainted image as physically plausible and as visually pleasing as

possible. The image inpainting methods can be divided into three categories [89, 31]. The

first category is diffusion-based inpainting approach [7, 13], in which the smoothness priors

via parametric models or partial differential equations (PDEs) to diffuse local structures

1
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from the exterior to the interior of the holes. These methods are suited for completing

straight lines, curves, and inpainting small regions. However, they are not well suited for

recovering the texture of large missing region. The second category is the examplar-based

inpainting algorithm [22, 85], in which the best match patch or a set of candidate patches

is chosen from the undamaged region by similarity comparing methods. Compared with

the diffusion-based inpainting algorithm, the examplar-based inpainting algorithms have

performed plausible results for inpainting the large missing region. However, this kind of

methods always select the most suitable patch for the current place, a greedy method,

which results in a risk of introducing unwanted object or artifact to the area to inpaint

[70]. The third category is sparse representation-based inpainting methods [24, 70, 26].

The basic idea of this kind of approach is to represent an image by the sparse combination

of an overcomplete set of transforms (e.g., wavelet, contourlet, discrete cosine transforms

(DCT)), then the missing pixels are inferred by adaptively updating this sparse represen-

tation [89, 31]. In sparse representation, the number of patches and their coefficients are

adaptively determined, instead of using only the best matching patch or a fixed number

of the best matching patches. This overcomes the artifacts caused by the greedy search

strategy used in exemplar-based algorithms. Therefore, the inpainting approach based on

sparse representation will be particularly concerned in this thesis.

In order to compute the sparse representation of a signal, a dictionary is firstly con-

structed. There are three kinds of dictionaries are proposed for sparse representation.

The first type is fixed dictionary which is often created by a prespecified set of function,

such as discrete cosine transforms (DCT), short-time Fourier transforms, wavelet, Curvelet

transform (CVT), and contourlet. However, these dictionaries are not well equipped for

representation more complex natural and high-dimensional signal data [92, 69]. The sec-

ond type is the learned dictionary, such as k-means singular value decomposition (K-SVD)

[1]. Because a dictionary is learned with a set of training images or updated adaptive-
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ly by using SVD operations, this method is termed as K-SVD which is the most widely

used adaptive dictionary construction method. Specially, the training images can come

from a set of natural images (globally trained dictionary) or input image itself (adaptively

trained dictionary). And Elad and Aharon have indicated that an adaptive dictionary

learned from a noisy input image sometimes outperforms and the fixed DCT or global

trained dictionary. However, the process of K-SVD is iterative learning with a large num-

ber of training images which is more costly to be applied to practical application, thus the

dimension of the dictionary is constrained due to its high computational complexity [39].

The third type is to use all the patches in the source region to construct the dictionary

[70]. This type of dictionary can keep visual consistent between the target region and

source region very well which makes the entire image looks plausible. However, this type

dictionary contains all the known image patches in the image, there will be a large number

of unrelated image patches to be restored [87]. In order to solve this problem, an aspect

of this thesis is to find similar patches by using the similarity comparison method before

generating the dictionary.

Therefore, the first objective of this research is to propose a new image inpainting based

on related dictionary constructed by histogram. The related dictionary is constructed from

the similarity comparison method using the histogram. In detail, the similarity comparison

method using the histogram is divided into the four steps: Step 1, compute the histograms

of the target patch and the candidate patches; Step 2, compare the histogram differences

of three-channel histograms between the target patch and candidate patches; Step 3, sum

the histogram differences and then sort them; At last, the similar patches are chosen

from the order of arrangement (i.e., the more in front of the sequence, the higher the

similarity between the target patch and candidate patch). Thus, the related dictionary

which is constructed by these similar patches has a close relationship with the target patch.

Because this similarity comparison method is sort by the sum difference value of R, G, B
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three-channel histograms, there is a case the sum difference values of different patches are

same which will make mistakes when we choose samples as the dictionary.

In order to solve this problem, a histogram dictionary is proposed for image inpainting.

The histogram dictionary is also constructed by the similar comparison method using the

histogram. The biggest difference from the related dictionary is in the third step of the

similarity comparison method using the histogram. In step 3, we chose the max differences

of the R, G, B three-channel histograms. And the other steps are the same as the similarity

comparison method for the related dictionary. Therefore, the second objective of this

thesis is to propose a new image inpainting based on sparse representation with histogram

dictionary.

1.2 Background of Image Fusion

Images are taken by cameras usually suffer from the limited depth of field of a lens, so

they can hardly get a picture in which all the objects are explicit, especially when the ob-

jects differ largely with each other in terms of their distances from the camera [45, 14, 108].

This effect may lead to a disadvantage for human observation or further computer pro-

cessing. In order to solve this problem, the technology of multifocus image fusion has been

proposed [44]. In this technology, it manages to detect the focused regions in multifocus

images of the same scene and then integrate them to generate a composite image in which

all the objects of interest are in focus. Until now, many image fusion algorithms have

been invented [28, 32, 79, 98, 102]. According to the domains in which visual information

is combined, these algorithms can be roughly grounded into two catalogs: transformed

domain-based methods and spatial domain-based methods. Transformed domain-based

methods process the transform coefficients while spatial domain-based method process

the pixels directly. The process of the transformed domain-based methods is as follows:

First, obtain the transform coefficients of input images by using the scale transformation;
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Second, acquire a fused transformed coefficient according to a specific fusion rule to fuse

the scale transformed coefficients of different images. Third, the fused image is got by tak-

ing an inverse scale transform on the fused coefficients. It should be noted that this kind of

algorithm often requires transforming the source images to different frequency coefficients,

i.e., high-frequency and low-frequency coefficients [53]. However, using the high-pass filters

usually leads to the ringing effects and “halo” around the major structures [102, 108].

While the spatial domain-based image fusion methods directly combines the original

information in the source images, which aim at synthesizing a fused image that is more

information for visual perception and computer processing [43]. These algorithms use a

fusion rule on the source images to obtain a fused image with all-in-focus. Most of these

methods are based on the block or region. And the process of block-based multifocus

image fusion methods are divided into the following steps: Firstly, divide the source

image into blocks; Secondly, compute some focus measurements for each block. In this

step, a binary map representing the blur and the focus regions can be obtained; Thirdly,

based on this map, the focused regions are detected and integrated to obtain the fused

image. Considering the spatial domain-based method process image pixels instead of the

multiscale transform coefficients, and it can well preserve the original intensities of source

images in the fusion result. Therefore, the third objective of this research is to propose

a new multifocus image fusion in spatial domain. Furthermore, a structure-preserving

filter is introduced into the proposed method, which aims to prevent smoothing across

structures while still smoothing texture. And then original intensities of source images

can well preserve in the fusion result [102].

However, single sensor image capture is insufficient to provide complete information

about a targeted scene because of the sensor system limitations. Therefore, an image can

be captured from different sensors which enhances visibility to human eyes or to mutually

complement limitations of each image. And the entire information from several captures
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should be integrated into a single image. Therefore, the multimodal image fusion technolo-

gy has been developed to merge different multimodal images into a single image. Specially,

multinodal medical image fusion has been emerging as a promising research field [112].

In medical imaging, different modalities such as positron emission tomography (PET),

single-photon emission tomography (SPECT), computer tomography (CT), and magnetic

resonance imaging (MRI) are used to capture complementary information [5]. CT imag-

ing can exactly detect dense structure such as bones and implants, while MRI provides

high-resolution soft substance information such as soft tissues. However, physicians often

need to sequentially analyze different modalities medical images for better diagnosis and

treatment.

Medical image fusion technique can be used to integrate the complementary infor-

mation contained in multiple medical images to obtain a composite image [96]. The

composite image not only can help the radiologist for better diagnosis and treatmen-

t, but also can help for the computer assisted surgery and radio surgery [5]. Re-

cently, many medical image fusion methods have been proposed over the past decades

[84, 2, 93, 18, 73, 50, 99, 100, 49, 102]. Because the human visual system (HVS) processes

information in a multiresolution fashion which has been evidenced in [68], most medical

image fusion methods are introduced under a multiscale transform-based framework to

pursue perceptually good results. For example, Yang et.al has successfully used the con-

tourlet transform into the medical image fusion because of its effectiveness in representing

spatial structures [95]. However, contourlet has no shift-invariant property, as it contains

downsampling process in the transform process. Recently, structure-preserving filter also

has been applied to achieve multi-scale decomposition of images [27, 36]. Considering the

ability of the to structure-preserving filter accurately separate an image into different scale

structures which can help to reduce halo and aliasing artifacts in the fusion process, we

will introduce it in the medical image fusion in this thesis to make the fusion results good
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for human visual perception. Therefore, the forth objective of this research is to propose

a new medical image fusion using segment graph filter and sparse representation.

1.3 Purpose of This Research

This study has aimed on developing the methods for image inpainting and image fusion

and to obtain the good inpainted image and fused image for image processing.

In Chapter 1, the backgrounds of image inpainting and image fusion, and research

purpose are particularly described.

In Chapter 2, the preliminaries is presented. The sparse representation, the structure-

preserving filter and objective assessment metrics are given in this chapter.

In Chapter 3, an image inpainting method based on sparse representation is proposed.

For sparse representation, the dictionary is very important. A related dictionary is ob-

tained by sum histogram similarity comparison method. The sum histogram similarity

comparison method is used to find out the patches which are similar to the target patch.

And then the similar patches are applied to generate the related dictionary. Because

the related dictionary is generated from the similar patches, a large number of unrelated

patches will be avoided to effect the inpainting result. Although the inpainting method

based on related dictionary can obtain good inpainting result, there also exist a special

case. That is to say, when the sum differences of histogram for patches are same, it can

not sort them and then can not choose a similar patch. Therefore, we also propose a

histogram dictionary which is generated from the similar comparison by max difference

of histogram. And then a new image inpainting method based on histogram dictionary is

also proposed in this chapter.

In Chapter 4, an image fusion based on structure-preserving filter is proposed. The pro-

posed fusion method is belong to the spatial domain method as the spatial domain method

directly process pixels rather than processing the transform domain coefficients. And be-
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cause the filtering is the most fundamental process of image fusion, and it is very important

to exploit structures and details within images for fusion, the structure-preserving filter is

used to prevent smoothing across structures while still smoothing texture in the proposed

method. The propose fusion method is compared to the state-of-the-art methods, and the

experimental results have shown that the performance of the proposed fusion scheme is

better than the state-of-the-art methods in terms of subjective and objective evaluation-

s. Also, a medical image fusion using segment graph filter and sparse representation is

proposed. In medical imaging, different modalities such as computer tomography (CT)

and magnetic resonance imaging (MRI) are used to capture complementary information.

However, a doctor needs both CT and MRI information in a single image for better di-

agnosis and treatment. Therefore, a medical image fusion using segment graph filter and

sparse representation to obtain a fusion medical image which contains the information

with different modalities.

Finally, in Chapter 5, give the conclusions of this thesis.



Chapter 2

Preliminaries

Some basic preliminaries will be described in this chapter to increase this thesis more

readable.

2.1 Sparse Representation

Sparse representation is based on the hypothesis that natural signal can be represented

by a linear combination of a “few” atoms in dictionary matrix [53, 61]. That is to say given

a dictionary D ∈ Rj×k (j < k) where each column of the dictionary D = [d1, d2, ..., dk]

named an atom, and then a target signal y = [y1, y2, ..., yj ]
T can be represented as a linear

combination of atoms:

y ∼= Dα, (2.1)

where α are coefficients which represent the signal y in terms of the dictionary D.

In practice, the sparse representation problem of y over D is usually cast as

minα‖α‖0 s.t. y = Dα, (2.2)

or

minα‖α‖0 s.t.‖y −Dα‖2 < ε, (2.3)

9
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where ‖.‖0 is l0 norm, i.e., count the number of nonzero entries of a vector, and ε is the

error tolerance. The optimization of it is an NP-hard problem and the greedy algorithms

such as matching pursuit (MP) [58], orthogonal matching pursuit (OMP) [76] and other

improved OMP [77] algorithms are always applied for solving this problem to estimate the

coefficients α.

Because sparse representation and compressed sensing have been developed, the non-

convex l0-minimization problems in Eq.(2.2) and Eq.(2.3) can be relaxed to obtain the

convex l0-minimization problems in [86, 12]

minα‖α‖1 s.t. y = Dα, (2.4)

and

minα‖α‖1 s.t.‖y −Dα‖2 < ε. (2.5)

Solutions of this problem can be obtained by using linear programming methods [86,

21].

2.1.1 Design a Proper Dictionary

How to construct a proper dictionary is of particular importance problem in sparse

representation. Recently, many dictionary generated methods have raised and these meth-

ods can be cast into three categories [105, 55]. One category is fixed basis, such as DCT

dictionary [92]. The advantage of this dictionary is simple and easy to implement. How-

ever, a major problem with this category of dictionary is that it is often restricted to

signals of a certain type and cannot be used for an arbitrary family of signals. The second

category is based on some learning methods, such as PCA, MOD and K-SVD [1]. These

learning-based methods mainly learn from two samples: one sample is a set of images

and the other sample is source images. Comparing the two learning samples, learning a
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dictionary directly from source images leads to better representation and provides superior

performance in many image and vision application [64]. Since, the K-SVD is a popular

learning dictionary, we introduce it as an example. The K-SVD algorithm is an iterative

alternation between two steps: sparse coding (in order to find α) and dictionary updating

(in order to find D). In the sparse sparse coding step, D is assumed to fixed, and the

above optimization problem as a search for sparse representation with coefficients sum-

marized in the matrix α. And this optimization problem can be solved by the MP [58]

and OMP [76] algorithms mentioned in section 2.1. In the dictionary updating stage, the

coefficient matrix α and the dictionary D are both presumed to be fixed. And only one

column in the dictionary dk and the coefficients which are correspond to it, the kth row

in α, denoted as αkT . Then use the singular value decomposition (SVD) to find alternative

dk and αkT . However, this learned dictionary always has high computational complexity

[39]. The third category is to use all the patches in the source region to construct the

dictionary [70]. This category of dictionary can keep visual consistent between the target

region and source region very well which makes the entire image looks plausible.

2.2 Structure-preserving Filter

2.2.1 Recursive Filter

The one-dimensional discrete recursive filtering process can be described by the fol-

lowing difference equation [71]:

J [n] =

M∑
i=0

aiI[n− i]−
N∑
j=1

bjJ [n− j], (2.6)

where I[n] is the input signal, J [n] is the filter output, ai and bj are the filter coefficients.

If M = 0 and N = 1, the filter of Eq. (2.6) becomes a first-order (1st-order) recursive
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filter, i.e., the simplest one. Accordingly, the 1st-order recursive filter can be expressed by

J [n] = a0I[n]− b1J [n− 1]. (2.7)

As shown in the literature [29, 101], let a0 = 1 − a and b1 = −a. Then, Eq. (2.7) is

rewritten as

J [n] = (1− a)I[n] + aJ [n− 1], (2.8)

which is depicted in Fig. 2.1, where z−1 denotes a one-sample delay in time, a ∈ [0, 1] and

Figure 2.1: System diagram for the filter

(1− a) are called the feedback and feedforward coefficients [71], respectively. Specifically,

J [n] is the output sample at time n which is based on the present input sample I[n] and

past output sample J [n− 1].

The transfer function of Eq. (2.8) is h(n) = (1− a)an [71]. Given an impulse signal of

δ(m − n), a response of (1 − a)am−n is generated. Here, m − n is the distance between

samples xm and xn [71, 29].

According to the above observation, Gastal et al. [29] propose a recursive edge-

preserving filter which is defined by

J [n] = (1− ad)I[n] + adJ [n− 1], (2.9)

where d is the distance between neighborhood pixels. As d increases, ad goes to zero,
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stopping the propagation chain. Thus, it can preserve edges.

2.2.2 Segment Graph Fliter

The well known structure-preserving smoothing techniques can be divided into two

types [103]: One is the optimization based filters, such as an edge-preserving filtering

method based on weighted least square (WLS) optimization in [27] and L0-smoothing

filter [88]. The other is the weighted average based, such as bilateral filter (BF) [27] and

guided filter (GF) [33]. Although these edge-preserving smoothing techniques are widely

used in many methods, they may lead to the “halo” artifacts and large time consumption

in the first type method, and cause the “halo” artifacts in the second type.

Figure 2.2: Filter kernel of structure preserving filter (SGF). The superpixels are presented
as hexagons. The pixelm is in the superpixel S0 (yellow hexagon). And its filtering window
Wm is shown with violet mask.

Zhang et al. [103] has introduced tree distance into their filter to solve the “halo”

problem appeared in most of these filters. And in order to solve “leak” problem, they

design a segment graph technique which is a more reliable edge-aware structure to represent

the image. According to these, a novel linear local filter based on segment graph, named

as segment graph filter (SGF) is proposed [103]. Because superpixel decomposition of a
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given image has been studied and the superpixel can run very fast in linear, they use the

superpixel decomposition to construct the segment graph. A detailed introduction of the

segment graph can be seen from Zhang et al .’s literature [103].

The SGF is based on the double weighted average, i.e., internal weight and external

weight. Taking the tree distance into consideration, the internal weight function w1 can

be defined by

w1(m,n) = exp(−D(m,n)

σ
), (2.10)

where D(m,n) represents the tree distance between pixels m and n. As σ controls the

attenuation speed of D(m,n), the w1 is inversely proportional to the tree distance D(m,n).

For describe external weight a smoothing window Wm with radius r and the superpixels

technology are introduced. The filter kernel of SGF is shown in Fig. 2.2. As shown in

Fig. 2.2, several superpixel regions are denoted as {S0, S1, ..., Sk} and the overlapped

regions are represented by {S′0, S′1, ..., S′k}, namely S′i = Wp ∩ Si. Therefore, the external

weight function w2 can be defined by the area size ratio of S′i and Si

w2(m,Si) =
|S′i|
|Si|

, (2.11)

where |S′i| and |Si| denote the area size of S′i and Si, respectively.

Once the internal weight and external weight are obtained, the filter output of an input

image I at pixel n can be given by

Jm =
1

Km

∑
0≤i<k

w2(m,Si)
∑
n∈Si

w1(m,n)In, (2.12)

where Km, Si and Jm represent a normalizing term, superpixel region and filter output,

respectively. w1 and w2 are the internal weight function and external weight function,

respectively. The output Jm at pixel m is the double weighted average of the intensity

value In in a specific neighbor region Ω=∪0≤i<kSi (n∈ S0).
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In the linear implementation of SGF, a threshold τ is always set to cut off some of the

edges between S0 and its neighborhood Si for taking full advantage of segment graph. In

Fig. 2.2, the connecting edge Emin between S0 and its neighborhood Si during the segment

graph construction can be defined by

Emin(S0, Si) = min{W (u, v)|u ∈ S0, v ∈ Si}, (2.13)

W (u, v) = |Iu − Iv|, (2.14)

where u ∈ S0, v ∈ Si are the pixels/vertexes of the connecting edge.

Considering the above description, the filter output of the segment graph filter can be

rewritten by

Jm =
1

Km

∑
0≤i<k

δiw2(m,Si)
∑
n∈Si

w1(m,n)In

s.t. δi =


0, ifEmin(S0, Si) > τ

1, otherwise.

(2.15)

2.3 Objective Assessment Metrics

Objective assessment metrics are usually used to evaluate the process result for image

processing. In this paper, we use the peak-signal-to-noise-ratio (PSNR) [81] to evaluate

the inpainting result, and the fusion performances are evaluated by the six metrics, i.e.,

feature-based metric Q
ab|f
p [90], structure-based metric Q

xy|f
w [94], the normalized mutual

information QMI [35], a nonlinear correlation information entropy QNICE [56], Chen-Blum

metric QCB [56, 15], and spatial frequency error QSF based on spatial frequency [56, 111].

The PSNR is belong to the evaluation which requires a reference image and the large

the PSNR value are, the better the inpainting result. Because it is often very difficult to

obtain a ground truth, the aboved six metrics are the objective evaluation metrics without
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requiring a reference image. And the larger the Q
ab|f
p , Q

xy|f
w , QMI , QNICE and QCB values

are, the better the fusion results are, while the smaller the QSF value is, the better the

fusion result is.

2.3.1 Peak-Signal-to-Noise-Ratio (PSNR)

Given a reference image r and a test image t, and the size of them are all M ×N , the

PSNR between r and t

PSNR(r, t) = 10 log10(2552/MSE(r, t)), (2.16)

where

MSE(r, t) =
1

MN

M∑
i=1

N∑
j=1

(rij − tij)2. (2.17)

As the value of MSE approaches zero the PSNR approaches infinity, which show that a

higher PSNR value provides a higher image quality [34].

2.3.2 Edge Evaluate Metric (Q
ab|f
p )

Because the human visual system (HVS) is sensitive to edge information, it is necessary

to keep this information as much as possible. Xydeas and Petrovic [90] propose a metric

Q
ab|f
p to evaluate the amount of edge information which is preserved in the fused image.

The edge information preservation value QAF between source image A and the fused

image F can be defined as

QAF (i, j) = QAFg (i, j)QAFα (i, j), (2.18)

where QAFg and QAFα are the edge strength and orientation preservation values, respec-

tively.

Similarly, the edge information metric transferred from source image B into the fused
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image F can also be computed. And then a normalized weighted performance metric Q
ab|f
p

between source images A, B and fused image F is computed by

Qab|fp (i, j) =

∑N
n=1

∑M
m=1[QAF (i, j)wA(i, j) +QBF (i, j)wB(i, j)]∑N

n=1

∑M
m=1(wA(i, j) + wB(i, j))

, (2.19)

where wA(i, j) and wB(i, j) are the weighted coefficients defined by

wA(i, j) = [gA(i, j)]L, (2.20)

wB(i, j) = [gB(i, j)]L, (2.21)

with a constant value L.

2.3.3 Image Structure Similarity Metric (Q
xy|f
w )

The structural similarity metric (SSIM) [82] for the source image X and fused image

F with a sliding window w can be defined by

SSIM(X,F |w) =
(2w̄Xw̄F + C1)(2σwXF + C2)

(w̄2
X + w̄2

F + C1)(σ2
wX

+ σ2
wF

+ C2)
, (2.22)

where C1 and C2 are small constants, wX denotes the sliding window under consideration

in X, w̄X is the mean of wX , σ2
wX

and σwXwF are the variance of wX and covariance of wX

and wF , respectively. The structural similarity metric for the source image Y and fused

image F can also be computed.

Yang et al. [94] propose a new structural similarity with a threshold

Qxy|fw =



λwSSIM(X,F |w) + (1− λw)SSIM(Y, F |w),

if SSIM(X,Y|w) ≥ 0.75,

max{SSIM(X,F |w), SSIM(Y, F |w)},

if SSIM(X,Y|w) < 0.75,

(2.23)
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where the weight λw is defined by

λw =
s(X|w)

s(X|w) + s(Y |w)
. (2.24)

In an implementation, s(X|w) and s(Y |w) are the variances of images X and Y with the

window w, respectively.

2.3.4 Normalized Mutual Information (QMI)

Mutual information [35] is used to quantify the overall mutual information between the

source images and fused image. For the source image A and fused image F , the mutual

information is given by

MI(A,F ) = H(A) +H(F )−H(A,F ), (2.25)

where

H(A) = −
∑
a

p(a) log2 p(a), (2.26)

H(F ) = −
∑
f

p(f) log2 p(f), (2.27)

H(A,F ) = −
∑
a,f

p(a, f) log2 p(a, f), (2.28)

where p(a) and p(f) are the marginal probability distribution functions of A and F ,

respectively and p(a, f) is the joint probability distribution function of A and F .

Based on Eqs. (2.26) - (2.28), the mutual information can be rewritten as

MI(A,F ) =
∑
A

∑
F

p(a, f) log2

p(a, f)

p(a)p(f)
. (2.29)

Similarly, MI(B,F ) is the mutual information between the source image B and fused
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image F which can be defined by

MI(B,F ) =
∑
B

∑
F

p(b, f) log2

p(b, f)

p(b)p(f)
. (2.30)

Finally, the normalized mutual information performance metric QMI is defined by

QMI = 2

[
MI(A,F )

H(A)H(F )
+

MI(B,F )

H(B)H(F )

]
. (2.31)

2.3.5 Nonlinear Correlation Information Entropy (QNICE)

Nonlinear correlation information entropy (QNICE) is a quality metric based on in-

formation theory [80]. A nonlinear correlation matrix R of the source images A, B, and

fused image F is defined as

R =


NCCAA NCCAB NCCAF

NCCBA NCCBB NCCBF

NCCFA NCCFB NCCFF

 =


1 NCCAB NCCAF

NCCBA 1 NCCBF

NCCFA NCCFB 1

 , (2.32)

where NCCX,Y represents the nonlinear correlation coefficient between the source images

A, B and the fused image F [80].

Let the eigenvalues of the nonlinear correlation matrix R be λi (i = 1, 2, 3). Then,

the QNICE is computed as

QNICE = 1 +
3∑
i=1

λi
3

log256

λi
3
. (2.33)
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2.3.6 Chen-Blum Metric (QCB)

According to the human visual system (HVS), a quality assessment, named QCB is

defined by Chen and Blum [15]. Let the masked contrast map for source image A be

C
′
A =

t(CA)p

h(CA)q + Z
, (2.34)

where t, h, p, q, and Z are real scalar parameters that determine the shape of the nonlin-

earity of the masking function [15]. The information preservation value QAF (x, y) from

source image A to fused image F is defined as

QAF (x, y) =


C

′
A(x,y)

C
′
F (x,y)

, if C
′
A < C

′
F

C
′
F (x,y)

C
′
A(x,y)

, otherwise.

(2.35)

The global quality map between source images A, B and F is computed as

QC(x, y) = λA(x, y)QAF (x, y) + λB(x, y)QBF (x, y), (2.36)

where λA(x, y) and λB(x, y) are the saliency maps of source images A and B, respectively.

Finally, the metric value QCB is obtained by averaging the global quality

QCB(x, y) = QC(x, y). (2.37)

2.3.7 Image Fusion Metric Based on Spatial Frequency (QSF )

Zhang et al. [111] propose an overall spatial frequency of an image A(i, j) which is

defined as

SF =
√

(RF )2 + (CF )2 + (MDF )2 + (SDF )2, (2.38)
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where RF , CF , MDF and SDF are the four first-order gradients along four directions

RF =

√√√√ 1

MN

M∑
i=1

N∑
j=2

[A(i, j)−A(i, j − 1)]2, (2.39)

CF =

√√√√ 1

MN

N∑
j=1

M∑
i=2

[A(i, j)−A(i− 1, j)]2, (2.40)

MDF =

√√√√wd
1

MN

M∑
i=2

N∑
j=2

[A(i, j)−A(i− 1, j − 1)]2, (2.41)

SDF =

√√√√wd
1

MN

N−1∑
j=1

M∑
i=2

[A(i, j)−A(i− 1, j + 1)]2, (2.42)

where the distance weight wd is set as 1/
√

2. The four reference gradients can be obtained

by taking the maximum of absolute gradient values between source images A and B along

directions

GradD(IR(i, j)) = max{abs[GradD(A(i, j))], abs[GradD(B(i, j))]}, (2.43)

where D = {H,V,MD,SD} denote as horizontal, vertical, main diagonal and secondary

diagonal, respectively. The four directional references RFR, CFR, MDFR and SDFR

can be computed with the reference gradients substituting the differences in Eqs. (2.39) -

(2.42). Thus, SFR can be computed from Eq. (2.38).

Finally, the ratio of the SF error (metric QSF ) is defined as

QSF = (SFF − SFR)/SFR. (2.44)



Chapter 3

Image Inpainting based on Sparse

Representation

3.1 Image inpainting based on related dictionary

3.1.1 Introduction

Image inpainting which is to fill the missing or corrupted areas by using the known

information of the image. These areas may be individual missing pixels in the damaged

image or be continuous regions resulting from man-made degradation and other reasons.

In recently, image inpainting has attracted growing interest from researchers because it

has a wide variety of applications, such as image object removal [31], image restoration

[37], transmission [26], noise removal [107] and disocclusion [59].

Formally, the problem of inpainting can be defined as following: given an input image

I with a target region Ω which is filled in all pixels by using the information of the known

areas Ψ = I − Ω [9].

Bertalmio et al. [7] firstly studied the image inpainting and then proposed an in-

painting approach based on linear partial differential equations. Since then, many in-

painting methods were proposed to address this problem. Generally, there are three types

22
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of image inpainting approaches, i.e., diffusion-based inpainting approach, exemplar-based

inpainting approach, and inpainting approach based on sparse representation [26]. The

diffusion-based inpainting approach is such that the corrupted area is restored by diffusing

the surrounding information to the target region [13, 7]. However, these diffusion-based

inpainting methods are not well suitable for the textured, especially if the target region to

be restored is larger than other regions. The exemplar-based inpainting approach, which is

inspired by the idea of texture synthesis technique [7], is that a patch in the corrupted area

is first selected, and then the unknown pixels in the selected patch is filled by copying the

pixels in the best matching patch in the whole source region by comparing the similarity

of selected patch [31, 22, 48, 17, 16, 89, 20]. Instead of using the best patch, inpainting ap-

proach based on sparse representation is to represent the image patches by using a sparse

linear combination of atoms from a dictionary. Thus, the dictionary is very important

for inpainting results. An effective sparse representation iterative inpainting algorithm is

proposed [26]. And it is very suitable for recovering different structural components in

the image. And the sparse representation can be adapted for restoring the color image

[57]. This method is mainly extended from the denoising algorithm [23] whose dictionary

is constructed by using the K-SVD [1]. After that, a similar algorithm is proposed in [70].

They directly used all the patches which are clipped from in the source region to construct

a dictionary and obtained good inpainting results. They also analyzed their method which

was better than the algorithm [57]. Although the dictionary generated from all the patches

in source region is advantageous to the image inpainting, it will have some the unrelated

atoms with image patch to be restored. Moreover, the unrelated atoms will introduce the

interference into inpainting results. As a result, it will affect the inpainting result.

Therefore, in order to solve this problem, a new similarity comparison algorithm is

proposed to find the similar patches before directly using the patches to generate the

dictionary in this section. And then, use these similar patches to generate a related
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dictionary for the target patch. At last, an image inpainting method is proposed based on

related dictionary in this chapter. This proposed method makes every target patch has it

corresponding related dictionary that can guarantee the inpainting result.

3.1.2 Algorithm

The overview of the proposed method will be presented in this section in detail. The

proposed method can be divided into the following three parts: find a target patch, gen-

eration of a dictionary and sparse reconstruction algorithm. In the first part, the target

patch is found by computing the filling order. And the whole algorithm is starting from

this patch. In the second part, we use the similarity comparison method of histogram to

compare the similarity between the target patch and the candidate patches and then to

find the similar patches for the target patch. Then, a related dictionary is obtained by

using the similar patches. In the last part, we use the known information from the tar-

get patch to estimate their unknown information according to the sparse representation.

Details of the proposed method are shown in the following.

Filling Order

The filling order of image patches, which decides a patch on the missing region bound-

ary with the highest priority for further inpainting, is crucial to inpainting results. In

the inpainting methods, a different filling order can lead to different results [16]. In our

method, we decide to use the filling order which is proposed in [17], since the structure

information can be efficiently preserved. Recently, the filling order [17] has been used for

their inpainting algorithms and obtained good results [70, 87]. Using the filling order to

compute every patch which is centered at p located the boundary δU between damaged re-

gion (target region T ) and undamaged region (source region S). Finding the target patch

ψp has the maximum priority. As the patch ψp is on the boundary, the patch contains the

known pixels A and the unknown pixels B. And we can see clearly the target patch in
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Fig.3.1.

Figure 3.1: Using the filling order to select the target patch with higher priority

The filling order proposed by Criminisi et al. [17] is an iteration algorithm with the

following three steps until all pixels have been filled:

Figure 3.2: Notation diagram. Given the patch Ψp, np is the normal to the contour δΩ of
the target region Ω and 5I⊥p is the isophote (direction and intensity) at the point p. The
entire image is denoted with I.

Step 1: Compute patch priorities. In the filling order algorithm, each pixel which is

unfilled maintains a colour value and a confidence value, which reflects the confidence in

the pixel value. Once a pixel is filled, the confidence will be frozen. That is to say, patches

along the fill front are also given a temporary priority value during the process of the

algorithm, which determines the order in which they are filled. Given a patch Ψp centred

at the point p for some P ∈ δΩ which is shown in 3.2, the priority P (p) of it is defined as
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the product of two terms:

P (p) = C(p)D(p), (3.1)

where C(p) and D(p) are the confidence term and the data term, and they are computed

by

C(p) =

∑
q∈Ψp∩C(q)

|Ψp|
, (3.2)

D(p) =
| 5 I⊥p · np|

λ
, (3.3)

where |Ψp| is the area of Ψp, λ is a normalization factor (e.g., λ = 255 for a typical

grey-level image), and np is an unit vector orthogonal to the front δΩ in the point p. The

function C(p) is set to C(p) = 0 ∀ p ∈ Ω, and C(p) = 1 ∀ p ∈ I − Ω.

Step 2: Propagate texture and structure information. Once all priorities on the fill

front have been computed, the patch Ψp̂ with the highest priority is found. And then fill

it with the inpainting algorithm from the source region Φ.

Step 3: Update confidence values. After the patch Ψp has been filled with new pixel

values, the confidence C(p) is updated in the area delimited by Ψp̂ as follows:

C(q) = C(p̂), ∀q ∈ Ψp̂ ∩ Ω. (3.4)

This is a simple update rule which allows us to measure the relative confidence of patches

on the fill front, without image-specific parameters.

Generation of Dictionary

In order to compute the sparse representation of the image patch, a dictionary must

be determined firstly. In the traditional method of generating a dictionary, there are three

kinds of dictionaries. The first kind is the fixed dictionary. For example, an over-complete

separable version of the DCT dictionary is constructed by sampling cosine waves with
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different frequency in [92]. However, this dictionary is not customized by using appropriate

input image data, the adaptability for certain types of data is not good. The second one is

the learning dictionary. For instance, the K-SVD dictionary learning algorithm. Although

this dictionary is adaptive to the input image date, it has high computational efficiency

[1, 105]. The third is the dictionary which is directly generated from the whole patches

clipped from the original region [70]. A problem of it is that some unrelated patches can

lead to some interference. In order to solve this proplem, we preprocess the candidate

patches by using the similarity comparison method of histogram in the proposed method,

as shown in Fig. 3.3.

Figure 3.3: Histogram comparison between target patch and candidate patches

In detail, the similarity comparison method by using the sum histogram difference is

shown in Fig. 3.4. First, select a target patch Ψp using the filling order which is described

by Criminisi et al. [16, 17] and compute the histogram of it. Let the histogram have N

bins. Therefore, the histogram of color image have N values. For three channels R, G, B
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Figure 3.4: The schematic diagram of the proposed sum histogram difference

of target patch Ψp, the histogram of each channel can be represented by

hΨpR =[hΨpR1, · · · , hΨpRN ]T , (3.5)

hΨpG =[hΨpG1, · · · , hΨpGN ]T , (3.6)

hΨpB =[hΨpB1, · · · , hΨpBN ]T . (3.7)

Second, cut the whole known patches fi from the image I and compute the histogram of

them. fi, (i = 1, . . . , L), with L denotes the number of known patches, fRi, fGi and fBi

denote three channels (RGB) of the patch, respectively. The histogram of each channel
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can be represented by

hfRi =[hfRi1, · · · , hfRiN ]T , (3.8)

hfGi =[hfGi1, · · · , hfGiN ]T , (3.9)

hfBi =[hfBi1, · · · , hfBiN ]T . (3.10)

Thus, two patches Ψp and fi can be use the simplest method to measure similarity by

comparing corresponding bins of the histogram. In R, G, B three channels, the difference

can be defined by comparing their histogram as follows:

VRi =||hΨpR − hfRi||1 =

N∑
j=1

(|hΨpRj − hfRij |), (3.11)

VGi =||hΨpG − hfGi||1 =
N∑
j=1

(|hΨpGj − hfGij |), (3.12)

VBi =||hΨpB − hfBi||1 =
N∑
j=1

(|hΨpBj − hfBij |). (3.13)

The similarity based on sum VSi is defined as

VSi = VRi + VGi + VBi. (3.14)

Considering the number of the known patches is L, the similarity based on sum is

written by VS = [VS1,···,VSL
]T .

Last, sort the VS and find the top TN (TN < L) known patches to generate the related

dictionary.

In the example shown in Fig. 3.5, the blue-green rectangle is denoted as target patch

which is the patch we want to inpaint. The mulberry rectangles are denoted as the

patches which we choose to generate the related dictionary. For example, we choose the
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Figure 3.5: Generate the related dictionary by using similar patches

top TN = 50 similar patches {Ψqj}50
j=1, among of them Ψq1 means the most similar one

and it represents as the first column of the related dictionary. The rest patches can be

done in the same manner.

Signal Recovery

After finding the patch Ψp, the aim of the sparse reconstruction is using the known

information A to estimate the unknown information B. Matrix M has a special structure

determined by the layout of the known pixels. Thus, the known information can be

computed by

A = MΨp. (3.15)

In the problem of image inpainting, it aims to use the known information A to estimate

the unknown information B. And A can be seen as the signal y in the theory of the sparse

representation, and then the sparse representation can be rewritten by

A = MDα, (3.16)
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where D is the new related dictionary which is generated by the similarity comparison

method of the histogram. In the proposed method, we will use the non-negative orthogonal

matching pursuit (NNOMP) [91] algorithm which is an improved method of OMP to obtain

the estimation of sparse coefficients α̂.

The NNOMP algorithm can be described as follows:

• Step 1: Initialize the residual r0 = A and initialize the set of selected variable

D(c0) = ∅. And let iteration counter i = 1.

• Step 2: Loop over all prototype signal atoms and find the index of the best atom

function in D as

ti = argmax < ri−1, dt >,

and add the variable Dti to the set of selected variables. Update ci = ci−1 ∪ ti.

• Step 3: Estimate the sparse representation α̂i by using Non-Negative Least Square

(NNLS)

α̂i = argminαi≥0 ‖ A−Dciαi ‖2= (DT
ciDci)

−1DT
ciA.

• Step 4: Update the residual ri = A−Dciα̂i = A−Dci(D
T
ciDci)

−1DT
ciA.

Let Pi = Dci(D
T
ciDci)

−1DT
ci denote the projection onto the linear space spanned by

the elements of Dci . Then the residual can be rewritten by ri = (I − Pi)A.

• Step 5: Stop the algorithm, if the stopping condition is achieved. Otherwise, set the

i=i+1 and return to Step 2.

If we obtain the estimation of sparse coefficients α̂ by using the NNOMP, the unknown

information B can be restored approximately using

B = M̄Dα̂, (3.17)
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where M̄ = E −M is a matrix which is decided by the layout of missing pixels and E is

also a matrix with each entry being one. In detail, missing pixels in the target patch can

be inpainted as follows:

Ψ̂i
p =


Ψi
p, if i ∈ A

(M̄Dα̂)i, if otherwise.

(3.18)

As discussed above, the schematic diagram of we proposed inpainting algorithm is

shown in Fig. 3.6.

Figure 3.6: Schematic diagram for the proposed inpainting algorithm

3.1.3 Experiment Results

The experiment is conducted to demonstrate that generating related dictionary by

using histogram is more effective than the original dictionary for image inpainting. In

this experiment, we adopt different dictionaries to compare with the inpainting results of
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them.

Image Inpainting with Different Dictionaries

In order to assess the performance of different dictionaries objectively, two dictionaries

are used for comparison: original dictionary and related dictionary. Two pairs of testing

images Fig. 3.7 (a) and Fig. 3.7 (b) show the original image and input image of one

natural landscape, respectively. Fig. 3.8 (a) and Fig. 3.8 (b) show the original image and

input image of another natural landscape, respectively.

(a) (b)

(c) (d)

Figure 3.7: Inpainting result with different dictionaries for image 1: (a) original image
(b) corrupted image including test region (c) inpainting result obtained by using original
dictionary (d) inpainting result obtained by using related dictionary.

Evaluation Index

To measure the experimental results of quantitative evaluation by using Peak Signal-

to-Noise Ratio (PSNR) obtained from MSE [81]. In addition, the values of PSNR in each

color channel (R, G, B) are also computed in experiments. Different from computing mean

square error (MSE) of the whole image, we just compute the mean square error of the

defective region. Note that the mean square error is computed by using
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(a) (b)

(c) (d)

Figure 3.8: Inpainting result with different dictionaries for image 2: (a) Original image
(b) corrupted image including test region (c) inpainting result obtained by using original
dictionary (d) inpainting result obtained by using related dictionary

MSE =

∑
(i,j) ∈ T (Iori(i, j)− Iinp(i, j))2

N(T )
, (3.19)

where Iori(i, j) is the brightness values of the original image and Iinp(i, j) is the brightness

values of the inpainted image. T represents the target region, that is to say the defective

region, it is noted in Fig. 3.1. And N(T ) represents the number of pixels in the defective

region.

The PSNR is defined by

PSNR = 10log10(
2552

MSE
). (3.20)

The experiment is conducted based on Fig. 3.6. And then we use the peak Peak Signal-

to-Noise Ratio (PSNR) between original image and the inpainted image as the evaluation

index to quantify the inpainting results. The results of quantitative metrics are depicted
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in Table 3.1. From the Table 3.1, we can learn that the proposed method by using the

related dictionary has a better inpainting effect than the method by using the original

dictionary.

Table 3.1: Objective performance

Metric original dictionary sub-dictionary

Image 1

R 18.45 18.78
G 20.58 21.01
B 23.66 24.19
RGB 20.40 20.80

Image 2

R 18.28 18.79
G 19.26 19.71
B 20.25 20.91
RGB 19.19 19.72

In order to view the experiment results easily, Fig. 3.9 and Fig. 3.10 are cropped to

show the inpainting result and the same parts of original image and corrupted image.

(a) (b)

(c) (d)

Figure 3.9: The cropped part from the image 1 and inpainting result: (a) original image (b)
corrupted image (c) inpainting result obtained by using original dictionary (d) inpainting
result obtained by using related dictionary.

As shown in Fig. 3.7 (c) and Fig. 3.8 (c), there are some artifacts in the inpainting
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(a) (b)

(c) (d)

Figure 3.10: The cropped part from the image 2 and inpainting result: (a) original im-
age (b) corrupted image (c) inpainting result obtained by using original dictionary (d)
inpainting result obtained by using related dictionary.

results by using the original dictionary, and they can be shown in Fig. 3.9 (c) and Fig.

3.10 (c) easily. These artifacts are produced because the original dictionary contains

the unrelated atoms with the image patch. And the inpainting results by using related

dictionary in Fig. 3.7 (d) and Fig. 3.8 (d) obtain good visual effect without a feeling of

oddness, and they can also be shown in Fig. 3.9 (d) and Fig. 3.10 (d) easily. From the

subjective evaluation and objective evaluation, we can see clearly that the performance of

inpainting algorithm using related dictionary are better than inpainting algorithm using

original dictionary. This implies that the patch inpainting using related dictionary is more

effective than using the original dictionary.

3.1.4 Conclusion

In this paper, we have proposed a new inpainting method based on sparse representa-

tion with a related dictionary. The related dictionary is well defined for each target patch,
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which consists of the patches in the uncorrupted area having a similar histogram with

that of the patch. This is an important step, because it guarantees the inpainting result

is more accurate. Thus, the target patch can be inpainted by a sparse representation of

the patches in the related dictionary. As shown in the experimental results, the proposed

method using related dictionary has obtained better performance than using the original

dictionary. The objective quantitative evaluation is consistent with the subjective visual

effect of the inpainting result.

In the future, we will concern how to choose out the patches are more relational to the

target patch by using the histogram. The chosen patches are more similar to the target

patch, the inpainting results will be better. In addition, we also want to study other

methods for image inpainting, especially the methods for the inpainting region is large.

3.2 Image Inpainting Based on Histogram Dictionary

3.2.1 An Improved Comparison Method of Histogram

In Section 3.1.1, the related dictionary is proposed to inpaint image. However, there

is a problem of it and the problem is shown as following.

Table 3.2: Objective performance

Metric R Channel G Channel B Channel Sum(R,G,B)

Sample1 4.2 3.5 2.3 10
Sample2 0.8 8.1 1.1 10
Sample3 6.1 1.5 2.4 10

As shown in Table 3.2, the sum values of three samples are all 10, so it will make

mistakes when we choose samples as the dictionary. In order to solve this problem, an

improved comparison method of histogram has been proposed. Considering the three

channels of the color image, we see the similarity of patches as a 3-D vector and find the

maximum value of it, then sort them. Using this max method, the order of the case in the

Table 3.2 can be shown in Table 3.3. And then we can find the similar patches to generate
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the histogram dictionary.

Table 3.3: Objective performance

Metric R Channel G Channel B Channel Sum(R,G,B) Max(R,G,B) Order

Sample1 4.2 3.5 2.3 10 4.2 1
Sample2 0.8 8.1 1.1 10 8.1 3
Sample3 6.1 1.5 2.4 10 6.1 2

Figure 3.11: The schematic diagram of the proposed maximum histogram difference

The schematic diagram of we proposed maximum histogram difference is summarized

in Fig. 3.11. As shown in Fig. 3.11, the big difference between the sum histogram and the

max histogram is the processing the differences of R, G, B three channels. Similar to the

Eq. (3.14), we denote the max difference of three channels as VMi. The similarity based

on max VMi is defined as

VMi = max(VRi, VGi, VBi). (3.21)

Considering the number of the known patches is L, the similarity based on max is
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written by VM = [VM1, ···, VML]T . And then, sort the VM and find the top TN1 (TN1 < L)

known patches to generate the histogram dictionary.

Histogram Dictionay

For each target patch, we choose the top TN1 = 50 sample patches, and then use them

to construct a histogram dictionary as an example. Fig. 3.12 (a) and (b) are shown the

two target patches and their similar patches by using the improved comparison method of

histogram. Fig. 3.12 (c) and (d) are shown the chosen patches of them in scatter plots.

(a) (b)

(c) (d)

Figure 3.12: The chosen patches by using max histogram (3-D): (a) target patch 1 and its
chosen patches, (b) target patch 2 and its chosen patches. (c) the histogram of the target
patch 1. (d) the histogram of the target patch 2.

Furthermore, in order to clearly show the difference by using the two different method

of histogram for comparing the similarity. Fig. 3.13 shows the chosen patches with the

same target patch by using the different comparing methods. It is shown the chosen top
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50 patches with the two methods in the same picture. The mulberry block is shown the

results of based on max method and the blue block is shown the based on sum method,

respectively. From Fig. 3.13 (a), the chosen top 50 sample patches by using similarity

based on max contain more relevant patches than that by using similarity based on sum.

From Fig. 3.13 (b), the chosen top 50 sample patches by using similarity based on max

are generally as relevant as the chosen patches by using similarity based on sum.

(a)

(b)

Figure 3.13: the chosen patches with sum and max histogram are shown in the same
picture (a) target patch 1 and its chosen patches by using sum and max histogram, (b)
target patch 2 and its chosen patches by using sum and max histogram.

3.2.2 Image Inpainting based on Histogram Dictionary

The process of the image inpainting based on histogram dictionary is similar to the

image inpainting based on related dictionary. And the proposed inpainting algorithm is
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described in detail in Algorithm 1.

Algorithm 1: The proposed method based on histogram dictionary

Input: the observed image I
Output: inpainting image Î
Initialization : block = n× n, KP , l = 0
Repeat :
Clipped the patch fl+1 from the image I in a window (n× n)
if fL+1 is in the source region S of image I then

fL+1 is as a candidate patch compute the histogram of the patch by Eq.(3.8)
L← L+ 1
KPL+1 ← [KPL fL+1]

end
while I has defective pixels do

initialization:VM = [ ]
use the filling order to find the target patch ψp
compute the histogram of it by Eq.(3.5)
for i = 1 : L do

compute the difference between target patch and the candidate patches by
Eq.(3.11)
VMi ← max(VRi, VGi, VBi);
VM ← [VM VMi];

end
index← sort(VM );
Dh ← KP (:, index(1 : L));
α̂← FNNOMP (ψp, Dh);
reconstruct the ψp by using Eq.(3.18);

end

return Î

3.2.3 Experiment

In this part, we test the performance of the proposed method on a variety of natural

images. We compare the proposed method with the inpainting algorithm of Criminisi et

al. [16, 17]. The proposed method is also employs the inpainting filling order which is

described in [16, 17]. And the proposed method is implemented by using Algorithm 1.

The number of L is set as 400, that is to say we choose the top 400 patches as the similar

dictionary. For fairness, the window size of all methods are set 9× 9.

The performance of the proposed method is compared with different image inpainting
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methods in quantitative evaluations. We use the peak signal-to-noise ratio (PSNR) as the

metrics to evaluate the imapinting results. Furthermore, in order to see clearly, PSNR

values in three channels (R, G, B) are also presented.

Figure 3.14: Obtained results of three natural images. The first row shows three original
images. The second row shows the degraded images. The third to fifth row show the result
of Criminisi et al. , the proposed method based on related dictionary and the proposed
method based on histogram dictionary.

Considering the two similarity methods, the proposed method inpaint the missing

region by using the related dictionary and histogram dictionary. Fig. 3.14 presents three
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testing images for this experiment. The first row are the original noncorrupted images. In

the remaining rows, from the first and the fourth rows are the corrupted images, results

of Criminis et al. inpainting algorithm [16, 17], the proposed method by using the related

dictionary and the proposed method by using the histogram dictionary. The peak signal-

to-noise ratio (PSNR) between the result and the original image is summarized in Table

3.4. It can be seen in Fig. 3.14, the results of Criminisi et al. algorithm cause obvious

Table 3.4: Objective performance

image RGB Criminisi
Similarity Method
sum max

N01

R 31.2285 36.2735 38.8340
G 32.9927 37.0261 40.4300
B 33.8244 37.0565 41.3951
RGB 32.6819 36.7854 40.2197

N06

R 31.2285 36.2735 38.8340
G 32.9927 37.0261 40.4300
B 33.8244 37.0565 41.3951
RGB 32.6819 36.7854 40.2197

N05

R 31.2285 36.2735 38.8340
G 32.9927 37.0261 40.4300
B 33.8244 37.0565 41.3951
RGB 32.6819 36.7854 40.2197

N02

R 31.2285 36.2735 38.8340
G 32.9927 37.0261 40.4300
B 33.8244 37.0565 41.3951
RGB 32.6819 36.7854 40.2197

miscopies in the third row. For instance, the snow mountain in (c) of the third row

appears unwanted structure of the result of Criminis et al.. This is because the method of

Criminisi et al., only choose a best match patch to inpaint missing region, some unwanted

artifacts appear the results. In the fourth row, the result of the proposed method by using

the related dictionary are shown. The edge of the mountain is not inpainted very well

in (a) of fourth row. And in (c) of fourth row, extra color produces in the result. For

the proposed method by using the reltaed dictionary, the similar patches are chosen by

similarity based on max in the framework of sparse representation, so it can overcome the



CHAPTER 3. IMAGE INPAINTING BASED ON SPARSE REPRESENTATION 44

influences which caused by the inpainting method of Criminisi et al.. Furthermore, the

histogram dictionary is generated by comparing the difference in 3-D vector, it is more

suitable for the color image than the related dictionary for the proposed method. And the

fact confirms the quantitative metrics as shown in Table 3.4. The objective quantitative

evaluation is consistent with the subjective visual effect of the inpainting result images.

3.2.4 Conclusion

A new image inpainting method based sparse representation has been proposed in this

chapter. In order to solve the poor adaptability which caused by the fix dictionary, the

proposed method based on sparse representation which use the dictionary constructed

directly from all the patches in the known region. And the dictionary constructed all the

patches which will be a large number of unrelated atoms came from the image patch to

be restored, so they may affect the inpainting result. In order to solve this problem, two

measure similarity methods, i.e., based on sum histogram and based on max histogram,

are proposed for comparing the similarity between the target patch and all candidate

patches. And then the similar patches are chosen to form the related dictionary and

histogram dictionary. In this way, the interference of the non-related patches to the sparse

construction can be avoided.

The experiment results show that the inpainting results using the histogram are better

than that of the related dictionary. And we also compare the proposed inpainting method

using the histogram dictionary with the method of Criminisi et al., the experiment results

show better performance both in the sense of PSNR quality and visual quality.



Chapter 4

Image Fusion Using

Structure-preserving Filter

4.1 Multifoucs Image Fusion Using Structure-preserving

Filter

4.1.1 Introduction

Images taken by digital cameras generally suffer from a certain level of degradation,

e.g., due to the limited depth of field of lenses, which leads to that parts of imaging objects

are focused while others are blurred [28, 102]. It is of great interest to develop multi-focus

image fusion (MFIF) [28, 32, 79, 98, 102] techniques, which manage to detect the focused

regions in multi-focus images of the same scene and then integrate them to generate a

composite image in which all the objects of interest are in focus.

With in this context, numerous MFIF techniques have been developed [28, 32, 79, 98,

102, 53, 44, 66, 41, 40, 36, 92]. According to domains in which the image information

is combined, these techniques are roughly divided into transform domain methods, i.e.,

multi-scale fusion methods, and spatial domain methods, i.e., single scale fusion methods

[43, 92]. The former ones mainly cast into three steps. First, compute the transform coeffi-

45
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cients of source images. Second, fuse these coefficients to composite coefficients with some

fusion rules. Finally, obtain a fused image by the inverse transform from the composite

coefficients. With this basic frame, various transforms have been fully explored for image

fusion [40, 54, 42, 62, 104, 52].

It should be noted that this kind of algorithm often requires transforming the source

images to different frequency coefficients, i.e., high-frequency and low-frequency coeffi-

cients [53]. However, using the high-pass filters usually result to the ringing effects and

“halo” around the major structures [102, 108].

In order to well preserve the structure of the original images, structure-preserving filters

have been introduced into the multi-scale decomposition, which aim to prevent smoothing

across structures while still smoothing texture [102, 88, 75, 27, 33]. Hu and Li [36] inte-

grate edge-preserving characteristic of the bilateral filter and the image directional feature

extracted by the filter bank. Bilateral filter-based methods usually involve artifacts around

the edge, such as a hole artifact. Further, Kumar [41] uses the cross bilateral filter (a vari-

ant of the bilateral filter) to extract the detail images, which is applied to compute weights

from the source images and then fuse the multi-sensor and multi-focus images by weighted

average. The cross bilateral filter-based method may introduce gradient reversal artifacts

in the fused image. Farbman et al. [27] use the weighted least squares filter to decompose

images for multi-scale tone and detail manipulation, and they indicate that the filter is

particularly suited for progressive coarsening of images for multi-scale detail extraction.

Because of the property of the method based on weighted least squares filter, it requires

the solution of a sparse linear system which limits the performance of the technique. Zhao

et al. [110] design a detail preserving multi-scale decomposition based on L0-smoothing

filter, which may lose some details since it depends on image gradients. Li et al. [44] use

the guided filter to refine the weight map and fuse images by a weight averaging rule. Be-

cause the input images of the guide filter are the guided and target images, the challenge
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of the guided filter-based method is the structure inconsistency between the two input

images [51]. Moreover, these structure-preserving filter-based methods in the transform

domain have a relatively high time complexity and the original intensities of source images

are not well transformed into fusion results [102].

Different from transform domain methods, spatial domain methods process specific

pixels directly. Also, the structure-preserving filter used in spatial domain methods is

different from it used in transform domain [102, 47]. In particular, the former processes

most scales of source images simultaneously, i.e., the intrinsic structure with large scales

and details with small scales, but the latter only processes the limited scales which are

determined by the decomposition levels. However, compared with the great concentration

on applying the structure-preserving filter in transform domain MFIF methods [36, 41,

27, 110, 44, 51], less attention has been paid to the application in spatial domain MFIF

methods [102].

The purpose of this paper is to develop a new spatial domain method based on

structure-preserving filter for image fusion. The latest recursive filter [29] is introduced

which processes image pixels instead of the multi-scale decomposition coefficients, so it

can well preserve the original intensities of source images in fusion result. Moreover, a

new focused region detection method is proposed based on an average low-pass filter. The

method detects the focused regions by the following three steps. First, the rough saliency

regions are obtained by comparing the source images and their corresponding smoothed

images with an average low-pass filter. This is based on a fact that the intensity error

between the source image and its corresponding smoothed image is large for a focused

pixel while relatively small for a defocused pixel. Second, in order to make the focus re-

gions more correctly, the average low-pass filter is reapplied to the rough saliency regions.

Finally, the initial weight maps are determined by saliency comparison.
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4.1.2 Multi-focus Image Fusion

Figure 4.1: Schematic of the proposed image fusion method. The letter ‘L’ denotes a fast
low-pass smoothing filter.

Schematic of the proposed image fusion method is depicted in Fig. 4.1. First, obtain

initial weight maps by a new focused region detection method. Second, refine the initial

weight maps using the recursive filter to obtain final weight maps. Finally, fuse the source

images and final weight maps to achieve the fusion result.

Obtain The Initial Weight Map by a New Focused Region Detection Method

The proposed focused region detection method consists of three steps. First, obtain the

rough saliency regions by comparing the source images and their corresponding smoothed

images obtained by an average low-pass filter. Second, to make the focus regions more

clearly we reapply the average low-pass filter to the rough saliency regions. Finally, the

initial weight maps are obtained by saliency comparison.

In the common case of MFIF, there are always two input images, where each one

has focused and defocused regions. Khan et al. [38] suggest that focused regions are

more salient than defocused ones. This fact gives us an idea that the salient regions

can be separated from source images by a simple average low-pass filter. In particular,

the saliency maps are obtained pixel-by-pixel by comparing original images with their

corresponding smoothed images. Since the proposed method does not require breaking

source images into blocks, then it can also effectively reduce block artifacts.
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As shown in Fig. 4.1, the two source images I1 and I2 are first smoothed by an average

low-pass smoothing filter

Īmp = Imp ∗ L1, m = 1, 2, (4.1)

where p is pixel index and L1 is an average low-pass filter with a default size of 5× 5.

Once the smoothed images, i.e., Īmp , are obtained, the prediction residual images can

be computed easily by comparing the smoothed images with their corresponding source

images as

Dm
p = |Īmp − Imp |, m = 1, 2. (4.2)

Because the intensity absolute differences of a focused pixel of the Dm
p have a relatively

large value than those in a defocused pixel, we can use them to detect image sharpness.

Then, reapply the average low-pass smoothing filter to the residual images:

D̄m
p = Dm

p ∗ L2, m = 1, 2, (4.3)

where D̄m
p [see Fig. 4.1] are the smoothed images of Dm

p and L2 is also an average low-pass

filter with a default size of 7× 7.

Then, the initial weight maps are generated by a saliency comparison

Pmp =


1, if D̄m

p = max[D̄1
p, D̄

2
p],m = 1, 2

0, otherwise.

(4.4)

The saliency comparison can be implemented by Algorithm 2.

Algorithm 2: Saliency comparison

if D1=max(D1, D2) then
P 1= 1

else
P 1= 0

end
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Achieve Final Weight Map Produced by Recursive Filter

It should be noted that the initial weight maps may cause holes and gaps in a homo-

geneous region [see Fig. 4.1] which may influence the fusion performance. To solve this

problem, we refine Pmp (m = 1, 2) by a real-time structure-preserving smoothing filter, i.e.,

the recursive filter (RF) [29]. The RF is performed on the Pmp by using the corresponding

Imp as the reference images

Rmp = RF (Pmp , I
m
p ), m = 1, 2. (4.5)

As shown in Fig. 4.1, Rmp (m = 1, 2) represent refined weight maps which are the results

of RF. Since the RF refines the saliency, it can improve the spatial consistency of weight

maps.

The final weight maps are decided by comparing the Rmp as follows:

Wm
p =


1, if Rmp = max[R1

p, R
2
p],m = 1, 2

0, otherwise.

(4.6)

Note that this process is a saliency comparison, so it can also be implemented by Algo-

rithm 2.

Generate Fusion Result

Once the final weight maps are obtained, the fused image can be generated directly by

F = W 1
p I

1
p +W 2

p I
2
p . (4.7)

According to the above description, the proposed fusion method is summarized by

Algorithm 3.
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Algorithm 3: The proposed method based on recursive filter

Input: the observed image I1 and I2

Output: Fused image F
Function Fusion Scheme (I1, I2);
Ī1 = I1 ∗ L1;
Ī2 = I2 ∗ L1;
D1 = |Ī1 − I1|;
D2 = |Ī2 − I2|;
D̄1 = D1 ∗ L2;
D̄2 = D2 ∗ L2;
Dmax = max(D̄1, D̄2) ;
for m ∈ {1, 2} do

Pm = Saliency Comparison(D̄m,Dmax);
Rm = Recursive F ilter(Pm,Im)

end
Rmax = max(R1, R2);
W 1 = Saliency Comparison(R1,Rmax);
W 2= Saliency Comparison(R2,Rmax);
F = W 1I1 +W 2I2;
return F ;
End Function;
Function SaliencyComparsionS1,Smax if S1 = Smax then

T 1 = 1
else

T 1 = 0
end
ReturnT 1;
End Function;
Function RecursiveF ilter(P , I) Obtainging the R from P and I;
return R;
EndFunction;
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4.1.3 Experiments

Experiment Setup

In the experiments, the six pairs of multifocus images: “disk”, “lab”, “leaf”, “news-

paper”, “clock” and “temple” are used for evaluating the performances of the proposed

method. We set σs = 40 and σr = 0.2 as the default parameters in the experiments. And

the detailed parameter influence is analyzed in Section 4.1.3.

Objective Assessment Metrics

In this paper, the fusion performances are evaluated by the six metrics, i.e., feature-

based metric Q
ab|f
p [90], structure-based metric Q

xy|f
w [94], the normalized mutual informa-

tion QMI [35], a nonlinear correlation information entropy QNICE [56], Chen-Blum metric

QCB [56, 15], and spatial frequency error QSF based on spatial frequency [56, 111]. The

larger the Q
ab|f
p , Q

xy|f
w , QMI , QNICE and QCB values are, the better the fusion results

are, while the smaller the QSF value is, the better the fusion result is.

Compared Methods

The proposed multifocus image fusion method based on recursive filter (MFRF) is

compared with the representative image fusion methods including NSCTSR [53], GFF

[44], MFGD [66], FFIF [102], and CBF [41]. Liu et.al [53] present a general image fu-

sion framework with multi-scale transform and sparse representation. They perform the

multi-scale transform on the source images to obtain the low-pass and high-pass coeffi-

cients, and then use the sparse representation and the “max-absolute” rule to fuse them,

respectively. In the last, they also indicate that the framework based on a nonsubsam-

pled contourlet transform (NSCT) and sparse representation (NSCTSR) [53] is best for

multi-focus image fusion. The fusion methods based on guide filter (GFF) [44], a fast

structure filter (FFIF) [102] and cross bilateral filter (CBF) [41] are all fusion methods
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based on structure-preserving filters as introduce in Section 1. Paul et.al [66] propose

a novel method for multi-exposure and multifocus image fusion in gradient domain (M-

FGD). The fusion processes of the luminance and chrominance channels are treated in

different ways. The MFGD is based on blending the gradients of the luminance compo-

nents of the source multifocus images and use the image reconstruction technique of Harr

wavelet-based to fuse luminance.

To show the effectiveness of MFRF comparing with the fusion methods in transform

domain, so we choose one of them, i.e., the fusion method based NSCT (NSCTSR) [53].

We also select a gradient domain method, i.e., MFGD [66], to demonstrate the proposed

spatial method can get better fusion performances than the existing methods. And as

the MFRF is based on structure-preserving filter, we also choose three fused methods

based on structure-preserving filters, i.e., GFF [44], FFIF [102] and CBF [41], to show

the effectiveness of MFRF. For all these methods, we use the default parameters given in

authors’ papers and source codes provided by them.

Experiment Results

The first experiment is conducted to demonstrate that the average filter chosen as the

low-pass filter in the proposed method is more effective than other low-pass filters. The

second experiment is conducted to demonstrate that the proposed method achieves the

state-of-the-art fusion performance.

Compare with Different Low-pass Filters

There are some common low-pass filters such as average filter (AVE), Gaussian filter

(GAU), median filter (MED) and bilateral filter (BLF). In order to find an effective low-

pass filter for the proposed method, we conduct an experiment for six pairs of testing

images on this subsection. For a fair comparison, we use the same framework as shown in

Fig. 4.1 and the same window size with the four low-pass filters. The fusion performances



CHAPTER 4. IMAGE FUSION USING STRUCTURE-PRESERVING FILTER 54

are evaluated by the values of Q
ab|f
p , Q

ab|f
w , QMI , QNICE , QCB and QSF . The experimental

results are shown in Fig. 4.2. As shown in the Fig. 4.2, the fusion results of the AVE and

GAU get the higher metrics value than that of the other two low-pass filters for the top

five metrics while getting the smaller value of QSF . And considering the AVE is a simple

one without setting the standard deviation parameter σ which is important in the GAU,

thus we choose it for the proposed method.

Figure 4.2: Fusion performance of different low-pass filters (a) disk, (b) lab, (c) leaf, (d)
newspaper, (e) clock, (f) temple.
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Figure 4.3: Fusion results obtained by different methods for multi-focus image “disk” (a)
disk 1 (b) disk 2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF (h) MFRF.

Compare with Different Fusion Methods

In this section, the proposed method is compared with five state-of-the-art algorithms

: NSCTSR [53], GFF [44], MFGD [66], FFIF [102], and CBF [41] which are described in

detail in Section 4.1.3. Experiments are conducted on the six pairs of multi-focus images

as shown in Figs. 4.3 - 4.8 (a) and (b). Fig. 4.3 represents the fused images of different

fusion algorithms for the “disk” dataset. As shown in Figs. 4.3 (c) and (g), there are some

artifacts in the NSCTSR and CBF fusion results. Fusion results of NSCTSR, GFF and

CBF methods have “halo” artifacts in the boundary of the clock [see Figs. 4.3 (c), (d)

and (g)]. It can be seen in Fig. 4.3 (e), the fusion result of MFGD method increases the

brightness and causes many blurring artifacts. The fusion result of FFIF has artifacts in

vertical edges of the clock [see Fig. 4.3 (f)]. That is to say, the edges are not well preserved.

The proposed MFRF method obtains better performance in visual quality [see Fig. 4.3

(h)].

Fig. 4.4 displays the fusion results on “lab” dataset. From Fig. 4.4 (c), Fig. 4.4 (d),

Fig. 4.4 (f) and Fig. 4.4 (g), it is clear that the fusion results produced by NSCTSR, GFF,



CHAPTER 4. IMAGE FUSION USING STRUCTURE-PRESERVING FILTER 56

Figure 4.4: Fusion results obtained by different methods for multi-focus image “lab” (a)
lab 1 (b) lab 2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF (h) MFRF.

Figure 4.5: Fusion results obtained by different methods for multi-focus image “leaf” (a)
leaf 1 (b) leaf 2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF (h) MFRF.
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FFIF and CBF methods have “halo” artifacts around the head of the human. It can be

seen from Fig. 4.4 (e) that the fusion result of MFGD also increases the brightness of

the source images and has blurring artifacts and ringing artifacts in the edge of the head

and body of the human. Compared with other methods, the fusion result of the proposed

MFRF has fewer artifacts [see Fig. 4.4 (h)].

Figure 4.6: Fusion results obtained by different methods for multi-focus image “newspa-
per” (a) newspaper 1 (b) newspaper 2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF
(h) MFRF.

The fusion results with different methods on “leaf” dataset are shown in Fig. 4.5. The

fusion result of NSCTSR method has some blurring artifacts in the strong edge indicated

in the red rectangle [see Fig. 4.5 (c)]. As shown in Fig. 4.5 (d), some artifacts are observed

in the edge of a leaf which is also indicated by the red rectangle in the fusion result of

GFF method. The brightness of the fusion result of MFGD method is higher than those

of other fusion methods [see Fig. 4.5 (e)]. As seen from Fig. 4.5 (f), the fusion result of

FFIF method causes blurring artifacts in the small leaf which are seen clearly in the red

rectangle. From Fig. 4.5 (g), it can be seen that the fusion result of CBF method decreases

the sharpness of some region shown in the red rectangle.

Fig. 4.6 shows the fusion results obtained by different fusion algorithms on the “newspa-
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Figure 4.7: Fusion results obtained by different methods for multifocus image “clock” (a)
clock 1 (b) clock 2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF (h) MFRF.

per” dataset. As can be seen from Fig. 4.6 (c), the fusion result of method CBF generates

the ringing and blurring artifacts. Fig. 4.6 (d), Fig. 4.6 (f) and (g) display the fusion

results obtained by NSCTSR, GFF and CBF algorithms, there are some blurring artifacts

in the boundary between the focused and defocused regions. Some shadows like artifacts

edge occur around the letter in the fusion result of method MFGD [see Fig. 4.6 (e)]. In

Fig. 4.6 (e) most of the words are blurred, so it is hard to get some information from them.

It can also be observed that there are still some blurring artifacts in the fusion result of

the MFRF method [see Fig. 4.6 (h)]. However, it has fewest artifacts in the fusion results.

Fig. 4.7 shows the fusion results of “clock” dataset. As shown in Fig. 4.7 (c) and (g),

the fusion results obtained by NSCTSR and CBF have artifacts in the top left corner of

the big clock. For the image brightness, the fusion result in Fig. 4.7 (e) increases image

brightness and also has blurring artifacts. The fusion result of FFIF method is blurred as

shown in the top-right edge of the bigger clock and decreases the sharpness [see Fig. 4.7
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(f)]. It is observed from Fig. 4.7 (d) and (h) that GFF and MFRF algorithms work better

than the other algorithms.

Figure 4.8: Fusion results obtained by different methods for multifocus image “temple”
(a) temple1 (b) temple2 (c) NSCTSR (d) GFF (e) MFGD (f) FFIF (g) CBF (h) MFRF.

The fusion results of different algorithms for “temple” dataset are shown in Fig. 4.8.

It can be seen from Fig. 4.8 (c) that, there are some blurring artifacts around the stone

lion and additional shadows in the background. For the image brightness, the fusion result

obtained by the GFF method decreases image brightness [see in Fig. 4.8 (d)]. As shown

in Fig. 4.8 (e), the fusion result of MFGD method not only produces the blurring artifacts

but also increases image brightness. From Fig. 4.8 (g) and (f) shown the fusion results

of NSCTSR and FFIF algorithms, there are additional shadows in the background. In

general, Figs. 4.4 - 4.8 (e) have blurring artifacts and increase image brightness among the

results. From Figs. 4.4 - 4.8 (h), it can be seen that the proposed MFRF method obtain

good fusion results in the test six pairs of images for subjective evaluation.

The objective evaluation of the fused results for the test six pairs of images are shown
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in Table. 4.4. In order to see more clearly, the highest values of each objective metrics

have been marked in bold. From Table. 4.4, it can be seen that the fusion results of MFRF

usually achieve the highest values of the evaluation metrics. Based on above analysis of

subjective and objective evaluation, it can be seen that the proposed algorithm obtains

the better fusion results than the other methods [53, 44, 66, 102, 41].

Computational Time Analysis

We evaluate the computation time of different methods to explore the efficiency of the

MFRF. All experiments are performed on a PC with an Intel (R) Core (TM) i7-2600K

3.40 Hz CPU and 16.0 GB RAM in MATLAB. Because the different image pairs have

different spatial resolutions, e.g, the images disk and lab have the same resolutions 640 ×

480, the images leaf have 268 × 204 resolutions, the images newspaper have 322 × 234

resolutions, the images clock have 256 × 256 resolutions and the images temple have 481

× 516 resolutions, the experiments are conducted on five resolutions.

The computation time of different fusion algorithms is executed 8 times and the average

time for each test image pair is shown in Table. 4.2. The execution time for the FFIF

algorithm is comparatively short when compared to the other methods, which is quite

obvious since it uses the fast algorithm. In contrast, the execution time of MFRF is

less than the NSCTSR and CBF methods and is comparable with that of the other two

methods. Therefore, the MFRF is promising for a real-time implementation.

Parameter Influence

In order to demonstrate the MFRF robustness, we study the influences of the parame-

ters σs and σr. The σs and σr control the space and range supports of the RF, respectively.

Because the six metrics are the same order of magnitude and in order to save space, we

just reveal the experiment result of metric Q
ab|f
p which is shown in Fig. 4.9. As shown

in Fig. 4.9, the influence of σr and σs are varying from 0.2 to 2 with intervals 0.2 and
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Table 4.1: Objective performance

Images Metric NSCTSR GFF MFGD FFIF CBF MFRF

disk

Q
ab|f
p 0.6918 0.7054 0.6744 0.7124 0.6813 0.7148

Q
xy|f
w 0.9179 0.9405 0.8312 0.9583 0.8966 0.9926

QMI 0.8628 0.9732 0.5122 1.0573 0.9203 1.1482
QNICE 0.8236 0.8291 0.8122 0.8338 0.8263 0.8390
QCB 0.6987 0.7247 0.5863 0.7560 0.6747 0.7841
QSF 0.0281 0.0331 0.1407 0.0295 0.0649 0.0187

lab

Q
ab|f
p 0.6960 0.7134 0.6615 0.7188 0.6942 0.7208

Q
xy|f
w 0.8919 0.9417 0.7894 0.9230 0.8661 0.9884

QMI 1.0249 1.1331 0.5987 1.1846 1.0690 1.2347
QNICE 0.8310 0.8360 0.8165 0.8389 0.8330 0.8414
QCB 0.6648 0.6919 0.5877 0.6983 0.6354 0.7379
QSF 0.0283 0.0328 0.0094 0.0321 0.0800 0.0203

leaf

Q
ab|f
p 0.7078 0.7177 0.6353 0.7199 0.7074 0.7212

Q
xy|f
w 0.9566 0.9697 0.8276 0.9794 0.9553 0.9880

QMI 0.9566 0.7738 0.3728 0.9181 0.7553 1.0501
QNICE 0.8146 0.8184 0.8073 0.8249 0.8176 0.8318
QCB 0.7465 0.7684 0.5758 0.7799 0.7326 0.7911
QSF 0.0264 0.0371 0.3883 0.0365 0.0681 0.0207

newsp

Q
ab|f
p 0.5695 0.6226 0.5481 0.6290 0.5471 0.6367

Q
xy|f
w 0.9395 0.9824 0.8871 0.9898 0.9030 0.9847

QMI 0.3048 0.6085 0.2635 0.8153 0.3655 0.8871
QNICE 0.8046 0.8119 0.8040 0.8198 0.8057 0.8229
QCB 0.6660 0.7297 0.5803 0.7423 0.6239 0.7352
QSF 0.0395 0.0389 0.1875 0.0350 0.1130 0.0268

clock

Q
ab|f
p 0.7375 0.7403 0.7142 0.7435 0.7380 0.7464

Q
xy|f
w 0.9319 0.9418 0.7992 0.9701 0.9390 0.9786

QMI 1.0507 1.1031 0.5989 1.1953 1.0791 1.2513
QNICE 0.8350 0.8384 0.8174 0.8428 0.8364 0.8473
QCB 0.7622 0.7666 0.6514 0.7763 0.7266 0.7882
QSF 0.0424 0.0546 0.0049 0.0621 0.1032 0.0376

temple

Q
ab|f
p 0.7152 0.7556 0.7367 0.7543 0.7449 0.7631

Q
xy|f
w 0.9386 0.9884 0.9040 0.9819 0.9492 0.9952

QMI 0.4341 0.7543 0.3054 0.8573 0.7085 0.9629
QNICE 0.8078 0.8228 0.8050 0.8277 0.8184 0.8364
QCB 0.6882 0.7917 0.6505 0.7949 0.7481 0.8103
QSF 0.0152 0.0255 0.0657 0.0262 0.0207 0.0055
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Table 4.2: Average computation time (in seconds) comparison

Images NSCTSR GFF MFGD FFIF CBF MFRF

disk 44.6275 0.3572 1.0031 0.1000 52.3861 0.2887
lab 39.2177 0.3608 1.0045 0.1001 52.9350 0.2803
leaf 9.2184 0.0315 0.2165 0.0081 9.4504 0.0876
newsp 12.1355 0.0471 0.2245 0.0119 12.9385 0.1071
clock 10.8090 0.0411 0.0574 0.0104 11.4014 0.0950
temple 44.7760 0.2812 0.9639 0.0782 42.5466 0.2566

Figure 4.9: Q
ab|f
p with respect to different σr and σs for six pairs multifocus images : (a)

disk (b) lab (c) leaf (d) newspaper (e) clock (f) temple.
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Figure 4.10: fusion results of different σs multifocus image “temple” and corresponding
weight maps of them : (a) σs=5 (b) σs=10 (c) σs=20 (d) σs=40 (e) weight map of (a) (g)
weight map of (b) (f)weight map of (c) (h) weight map of (d).
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20 to 200 with intervals 20, respectively. Since the amplitudes of the column and row of

Fig. 4.9 (a)-(f) change slightly, the objective performances of the MFRF are not sensitive

to the altering of σr and σs. It can be seen that the performance of the proposed method

is robust against the parameter variant in a wide range.

Table 4.3: Average performance in each data

Metrics NSCTSR GFF MFGD FFIF CBF MFRF

Q
ab|f
p 0.7188 0.7359 0.6866 0.7330 0.7316 0.7380

Q
xy|f
w 0.9555 0.9779 0.8386 0.9824 0.9540 0.9861

QMI 0.9752 1.1137 0.4989 1.1689 1.0202 1.2247
QNICE 0.8317 0.8400 0.8140 0.8438 0.8341 0.8472
QCB 0.7020 0.7811 0.6119 0.7871 0.7486 0.7978
QSF 0.0309 0.0352 0.1382 0.0565 0.0919 0.0246

Moreover, in order to show the subjective performance of the proposed method, we

fix σr = 0.2 and test the fusion results with different values of σs in image pair “temple”.

Fig. 4.10 shows the fusion results of different σs by using the proposed method. Fig. 4.10

(a) - (d) show the fusion results of σs = 5, σs = 10, σs = 20 and σs = 40. The corresponding

focus maps of them are shown in Fig. 4.10 (e) - (h). When σs = 5, the fusion result shown

in Fig. 4.10 (a) has some artifacts which are noted by a red rectangle. The focus map

of it is shown in Fig. 4.10 (e), and some focus regions are wrong. As the value of σs is

increasing, the wrong focus regions are decreasing. When σs = 40, the focus map shown in

Fig. 4.10 (h) is correct and the fusion result shown in Fig. 4.10 (d) is good. Additionally, as

shown in Fig. 4.9 the value of σs from 40 continues to increase, the values of metric Q
ab|f
p

of six tested images are stable. The experiment results show that good fusion performance

is obtained with these parameters.

Further Statistical Experiment

To carry out statistics valuation, more experiments are conducted on Zhang et al.’s

dataset [109] and the Lytro dataset [61]. Excepting the images used in our experiments,
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we choose 12 multi-focus images in the Zhang et al.’s dataset, and 20 images in Lytro.

Totally, we have applied 32 images to demonstrate the effectiveness of MFRF.

We calculate the average performance of different methods on these 32 images. The

result is listed in Table 4.3. As shown in Table 4.3, the MFRF method outperforms the

other methods in terms of the six metrics.

4.1.4 Conclusion

In this paper, a fusion method has been proposed based on RF in the spatial domain.

Particulary, the latest RF has been introduced as the structure-preserving filter. A fo-

cused region detection method has been presented to generate initial weight maps, which

utilizes the absolute differences between source images and their corresponding smoothed

images to detect saliency region. The RF has been used to refine the initial weight maps

to obtain the refinement weight maps. The refinement weight maps can improve the s-

patial consistency and then the fusion results. Experimental results have shown that the

proposed method presents superior performance in terms of both visual performance and

objective metrics. Furthermore, the proposed method is not sensitive to the setting of the

parameters and is promising for a real-time implementation.

4.2 Medical Image Fusion Using Segment Graph Fliter and

Sparse Representation

4.2.1 Introduction

With the development of various imaging devices, multimodal medical image fusion has

become an important research topic to obtain accurate clinical information to physicians

for better diagnosis. The single modality medical image cannot fully satisfy the doctors

to diagnose the patient’s condition. For example, the CT image can only show high-

resolution information such as bone structures and implants with less distortion while
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MR image can only show normal and pathological soft tissues information such as flesh

[5, 8, 84, 41]. Therefore, the technology of fusing different modality medical images into a

single image has attracted many researchers attention [3].

Multimodal image fusion is generally merged in the spatial domain or transform do-

main [60, 47]. In the spatial domain, a variety of methods have been proposed, such as

methods based on the principal component analysis (PCA) [65, 79], independent compo-

nent analysis (ICA) [60]. However, these approaches are not fully suitable for application

of medical image fusion since the features are sensitive to the human visual system exist-

ing in different scales [8, 95]. On the contrary, the multiscale or multiresolution analysis

is more suitable for the medical fusion purpose [8, 102]. Multiscale transforms, such as

Laplacian pyramid (LP) decompositions, wavelet transform (WT) and other multiscale

transforms have applied to image fusion [73, 10, 74, 11, 46, 4]. Many edge-preserving

filters have also been developed to prevent smoothing across structure while still smooth-

ing texture, such as anisotropic diffusion [67], bilateral filter [75], weighted least squares

filter [27], L0-smoothing filter [88], and guided filter (GF) [33]. For the reason that the

edge-preserving filters can be used to achieve multiscale decomposition like a multiscale

transform and a Laplacian pyramid decomposition, many edge-preserving filters are ap-

plied to image fusion [102, 6, 47] like algorithms based on the bilateral filter (BF) and

cross bilateral filter (CBF) [36, 41], algorithms based on the guided filter (GF) [44, 100].

The main weaknesses with these edge-preserving filters are that they may suffer from

various problems, including “halo” artifacts, residual artifacts, “leak” problem and time-

consuming shortcoming [103]. In order to solve these problems, an edge-preserving filter

based on double weight average, i.e., segment graph filter (SGF), is proposed [103]. In

this chapter, we will use edge-preserving decomposition based on SGF to decompose the

source images into base images and detail images. In recent years, sparse representation

(SR) has drawn significant interests in computer vision and image processing [63], such
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as image denoising [23], face recognition [86], action recognition [30], and object tracking

[97]. Yang et al. [92] first introduced the technology of SR into their multifocus image

fusion method. As the SR can enhance performance in image fusion, SR-based fusion has

emerged as a new active branch in image fusion and many researches have been proposed

[92, 53, 106, 83, 61]. Zhang et al. [105] have pointed out that most of the SR-based image

fusion methods also belong to the multiscale transform-based techniques. Further, they

have noted that almost all SR-based multimodal images fusion methods are multiscale

transform method [105].

In this paper, a novel method for medical image fusion based on segment graph filter

and sparse representation is proposed. Making use of SGF to preserve the structure

information, and the SR is utilized to improve the fusion performance. First, we apply

the SGF to decompose the source multimodal medical images into base images and detail

images. Second, the base images and detail images are treated separately: the base

images are fused by a fusion rule based on Shannon, and the detail images are fused

by the SR technology with a learned dictionary. Finally, reconstruct a fusion image by

combining the fused base image and the fused detail image. Experiments on different

multimodal images are conducted to validate the proposed fusion method. Comparing

SGF with other structure filters demonstrates that the SGF preserves well the structure

information. Performance comparison of the proposed method with the state-of-the-art

methods shows the efficiency of the proposed fusion method.

4.2.2 Proposed Fusion Framework

In this section, the proposed fusion framework will be discussed in detail. Consider-

ing two perfectly registered source medical images A and B, the proposed image fusion

approach consists of the following four steps:

Step 1 : Perform the SGF on the two source images A and B to obtain the base
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Figure 4.11: Framework for the proposed method.

images

Ab = SGF (A), (4.8)

Bb = SGF (B). (4.9)

And then the detail images are obtained by subtracting SGF output from the original

images A and B

Ad = A−Ab, (4.10)

Bd = B −Bb. (4.11)

Step 2: A fusion criterion based on the activity measurement of base information is

chosen to fuse the base image in the proposed method [8]. The advantage of the fusion

rule is that it is well suitable for medical image and well retains the contrast in the fused

image [8]. The fusion criterion is computed by as follows:

1. Use the normalized Shannon entropy to compute the activity measurement for the

base image in a region R at point (x, y)

EA(x, y) =
1

|R|
∑

i,j∈(R)

(Ab(i, j))
2log(Ab(i, j)

2), (4.12)
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EB(x, y) =
1

|R|
∑

i,j∈(R)

(Bb(i, j))
2log(Bb(i, j)

2), (4.13)

where |R| is the size of the region, i.e., the total number of pixels contained in R.

2. Extract the salient information from base information of each image at a location

(x, y) to obtain the corresponding weight

SA(x, y) =
EA(x, y)

EA(x, y) + EB(x, y)
, (4.14)

SB(x, y) =
EB(x, y)

EA(x, y) + EB(x, y)
. (4.15)

3. Fuse the base information as following

CFb (x, y) = SA(x, y)Ab(x, y) + SB(x, y)Bb(x, y). (4.16)

Step 3: Apply the method based on SR with a learned dictionary to fuse detail images.

1. Divide the detail images Ad and Bd into image patches of the same size 8 × 8. In

this step, a sliding window at a step length of a fixed number of pixels is often used

to reduce block artifacts and improve robustness [105]. Suppose that there are N

patches denoted as {piA}Ni=l and {piB}Ni=l for images Ad and Bd, respectively. And

then learning a dictionary from the set of patches used by K-SVD dictionary learning

algorithm [1].

2. For a pair of patch {piA, piB} at position i, rearrange it into column vectors{viA, viB}.

3. Calculate the sparse coefficient vectors {αiA, αiB} of {viA, viB} using the orthogonal

matching pursuit (OMP) algorithm [76]

αiA = minα‖α‖0 s.t.‖viA −Dα‖2 < ε, (4.17)

αiB = minα‖α‖0 s.t.‖viB −Dα‖2 < ε, (4.18)
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where D is the learn dictionary used K-SVD algorithm.

4. Obtain the fused sparse vector αiF by using the “max−l1” rule since it is appropriate

for image fusion [93]

αiF =


αiA, if ‖αiA‖1 > ‖αiB‖1,

αiB, otherwise.

(4.19)

And then the fusion result of viA and viB is computed by

viF = DαiF . (4.20)

Finally, the fused image Di
F at position i can be reconstructed by viF . Reshape the viF into

a patch piF with size 8 × 8 and then plug it into its original position. For all the source

image patches in {piA}Ni=1 and {piB}Ni=1, repeat the above process to obtain the detail fused

image CFd .

Step 4: Once the base fused image CFb and detail fused image CFd have been obtained,

the fused image F is reconstructed by

F = CFb + CFd . (4.21)

According to the above description, the framework of the proposed method is repre-

sented in Fig. 4.11.

4.2.3 Experiment Results

Experimental Setting

There are three parameters that should be set in the SGF of the proposed fusion

algorithm: r is the window size, σ and τ control speed of the attenuation in Eq.(2.10) and

stop the aggregation from Si and S0 in Eq.(2.15), respectively. Under the range of the
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three parameters described in the [103], we set three parameters are r = 12, σ = 0.01 and

τ = 40/255, respectively.

Performance Metrics

The fusion performances are evaluated by the four measures including feature-based

metric Q
ab|f
p [90], structure-based metric Q

xy|f
w [94], the normalized mutual information

QMI [35], and a nonlinear correlation information entropy QNICE [72, 56].

Comparing other Structure Preserving Filter

In order to validate that the segment graph filter (SGF) can preserve well structure

information. We compare SGF with different edge-preserving filters, i.e., weighted least

squares filter (WLS) [27], an isotropic diffusion [67], L0-smoothing filter [88], Cross Bi-

lateral Filter (CBF) [36, 41] and guided filter (GF) [33]. In general, therefore, we apply

different edge-preserving filters into the same proposed method framework for a fair com-

parison. Experiments are carried on four pairs of testing images. And the images are

divided into two groups. Group a contains Fig. 4.12 (a) and Fig. 4.12 (b), and they are

CT and MRI images of the brain. Group b contains Fig. 4.13 (a) and Fig. 4.13 (b), and

they are T1-weighted MR image (MR-T1) and MRA, respectively. Group c contains Fig.

4.14 - 4.15 (a) and Fig. 4.14 - 4.15 (b), and they are MR-T1 and MR-T2 images.

The experimental results are shown in Fig. 4.12-Fig. 4.15. The fusion results of L0

-SR and GF-SR based method shown in Fig. 4.12 (e) - Fig. 4.15 (e) and Fig. 4.12 (g) -

Fig. 4.15 (g) lead to the reduced contrast comparing with other fusion results. The fused

images shown in Fig. 4.12 (c) - Fig. 4.15 (c), Fig. 4.12 (d) - Fig. 4.15 (d), Fig. 4.12 (f) -

Fig. 4.15 (f) and Fig. 4.12 (g) - Fig. 4.15 (g) obtain the good fusion results in subjective

assessment.

The objective evaluations of the fusion results of the test four pairs images are shown

in Table. 4.4. In order to see easily, the highest values for all objective metrics have been
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Fusion result of different structure preserving filter for image 1: (a) CT (b)
MRI (c) WLS-SR (d) AD-SR (e) L0-SR (f) CBF-SR (g) GFF-SR (h) MSGF.

marked in bold. We can see clearly that the fusion result based on SGF obtain a better

quantitative value than other structure-preserving filters. In a word, the SGF can keep

the image structure better than other edge-preserving filters.

Compare with Different State-of-the-art Methods

To show the effectiveness of the medical image fusion using segment graph filter (MS-

GF), we perform the experiment and compare with some state-of-the-art methods. Par-

ticularly, five fusion methods are chosen to compare the performance of the proposed

algorithm: the fusion method based on nonsubsampled contourlet transform (NSCT) [53],

image fusion method based on Cross Bilateral Filter proposed by Kumar (CBF) [41], GFF

based on guided filtering proposed by Li et al. (GFF) [44], medical image fusion based

on nonsubsampled contourlet transform and PCNN proposed by Das et al. (NFCD) [19]

and the medical image fusion based guided image filter and image statistics (GFIS) [5].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: Fusion result of different structure preserving filter for image 2: (a) MR−T1

(b) MRA (c) WLS-SR (d) AD-SR (e) L0-SR (f) CBF-SR (g) GFF-SR (h) MSGF.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.14: Fusion result of different structure preserving filter for image 3: (a) MR−T1

(b) MR− T2 (c) WLS-SR (d) AD-SR (e) L0-SR (f) CBF-SR (g) GFF-SR (h) MSGF.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.15: Fusion result of different structure preserving filter for image 4: (a) MR−T1

(b) MR− T2 (c) WLS-SR (d) AD-SR (e) L0-SR (f) CBF-SR (g) GFF-SR (h) MSGF.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.16: Fusion result of different methods for different medical images for image 5 :
(a) MR− T1 (b) MR− T2 (c) NSCT (d) CBF (e) GFF (f) NFCD (g) GFIS (h) MSGF.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.17: Fusion result of different methods for different medical images for image 6:
(a) MR− T1 (b) MR− T2 (c) NSCT (d) CBF (e) GFF (f) NFCD (g) GFIS (h) MSGF.

Table 4.4: Objective performance

Images Metric WLS-SR AD-SR L0-SR CBF-SR GF-SR MSGF

Fig.4.12
Q
ab|f
p 0.6777 0.6869 0.4144 0.7002 0.4337 0.7510

Q
xy|f
p 0.8543 0.8602 0.6472 0.8778 0.7044 0.8954

QMI 0.5760 0.5925 0.9318 0.6226 0.3998 0.7227
QNICE 0.8102 0.8109 0.8216 0.8119 0.8055 0.8153

Fig.4.13
Q
ab|f
p 0.5686 0.5593 0.4929 0.5512 0.4753 0.6141

Q
xy|f
p 0.8536 0.8144 0.7227 0.8246 0.7513 0.8484

QMI 0.7937 0.8000 1.1047 0.7783 0.7013 0.8894
QNICE 0.8120 0.8121 0.8177 0.8117 0.8095 0.8146

Fig.4.14
Q
ab|f
p 0.4292 0.4762 0.3459 0.4744 0.3848 0.5463

Q
xy|f
p 0.8092 0.8342 0.7258 0.8413 0.7174 0.9154

QMI 0.7041 0.7213 0.6886 0.7219 0.6129 0.7906
QNICE 0.8112 0.8117 0.8105 0.8118 0.8099 0.8135

Fig.4.15
Q
ab|f
p 0.4477 0.4609 0.4025 0.4413 0.4231 0.5111

Q
xy|f
p 0.7870 0.7967 0.7208 0.7911 0.7321 0.8629

QMI 0.5018 0.5183 0.5255 0.5118 0.4795 0.5578
QNICE 0.8098 0.8104 0.8102 0.8102 0.8090 0.8116
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For a fair comparison, we use the parameters reported by the authors to yield the best

fusion results.

The experiments have been performed on two pairs of multimodal medical images as

shown in Fig. 4.16 - 4.17 (a) and (b). From the fusion results of the method CBF and

GFIS in Fig. 4.16 (d) - (g) and Fig. 4.17 (d) - (g), there are some artifacts in the two

fusion images. Some detail information of source images isn’t well integrated into the

fused images. Fig. 4.16 (c) - (e) and Fig. 4.17 (c) - (e) are shown the fusion results

of methods based on NSCT and GFF, and we can see clearly that the fusion results are

reduced contrast and they are not well suitable for people’s observation. It can be seen

easily that the contrast of the fusion results of Fig. 4.16 (f) - (h) and Fig. 4.17 (f) - (h)

retain better contrast than other fusion results.

The objective evaluations of the fusion results for the testing pairs images are shown

in Table. 4.5. From the Table. 4.5, the fusion results of proposed method achieve the

highest values (highlighted in bold) of many evaluation metrics. Therefore, the proposed

method not only preserves the edge information but also achieves good fusion result when

compared to existing methods.

Table 4.5: Objective performance

Images Metric NSCT CBF GFF NFCD GFIS MSGF

Fig.4.16

Q
ab|f
p 0.5905 0.4995 0.5966 0.5510 0.4781 0.5640

Q
xy|f
p 0.5966 0.7508 0.7232 0.7318 0.7287 0.7547

QMI 0.6328 0.6885 0.6430 0.7263 0.6813 0.8293
QNICE 0.8080 0.8087 0.8080 0.8093 0.8086 0.8122

Fig.4.17

Q
ab|f
p 0.5559 0.4854 0.5795 0.5419 0.5421 0.5925

Q
xy|f
p 0.6804 0.8442 0.7755 0.8429 0.8811 0.7507

QMI 0.5917 0.6908 0.6389 0.7248 0.7494 0.7682
QNICE 0.8076 0.8089 0.8083 0.8098 0.8103 0.8115
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Influence of parameters

We conduct the experiments on six pairs of images which study the influence of the

parameters σ and r with respect to Q
ab|f
p to reveal the proposed method robustness. The

experiment result is shown in Fig. 4.18. As shown in Fig. 4.18, the influence of σ and r

are varying from 0.1 to 0.15 with intervals 0.02 and 10 to 24 with intervals 2, respectively.

From the Fig. 4.18, we can see that the proposed method is robust to different values of

σ and r in a wide range.

4.2.4 Conclusion

In this paper, a new fusion algorithm which is based on SGF and SR is proposed

to fuse multimodal medical image fusion. Source medical images are filtered by SGF

to obtain base images and detail images. Two different rules are implemented to fuse

the base images and detail images. The base images are fused using a fusion rule based

on normalized Shannon entropy for retaining contrast whereas the technology SR with a

learned dictionary is used to fuse detail images for extracting features from source images.

The SGF can better preserve edge than other edge-preserving filters, which is verified in

the experimental results. Experimental results have also shown that the proposed method

based on SGF and SR obtain the fusion results of state-of-the-art fusion algorithms.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Q
ab|f
p with respect to different r and σ for six pairs multimodal images:(a-f)

are the results of input images of Fig.(4.12-4.16)



Chapter 5

Conclusions

This thesis have focused on the two aspects of image processing: image inpainting

and image fusion. The similarity of image inpainting and image fusion are both to get

a clear image for human visual system and machine processing. The related dictionary

and histogram dictionary have been proposed for image inpainting based on sparse rep-

resentation. Thesis two types of dictionary can avoid the irrelevant patches, and then

the proposed image inpainting method based on the two dictionaries can get the better

inpainting result. For image fusion, the structure-preserving filter has been applied to

refine the focus map and preserve the structure information of the image. Specifically, the

main contributions are drawn as follows.

• Two image inpainting methods based on sparse representation have been proposed

in Chapter 3. Specifically, two types of dictionary, i.e., the related dictionary and

histogram dictionary, have been proposed by using the similarity comparison meth-

ods based on histogram. And then based on thesis two types of dictionary, two new

inpainting methods have been proposed by using sparse representation.

• A multifocus image fusion method using structure-preserving filter has been pro-

posed in Chapter 4. The proposed fusion method is belongs to the spatial domain

method, so the original intensities of source images can be preserved in fusion results.

79
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Moreover, the proposed method also use the structure-preserving filter to smooth

the detail information while preserving the structures of focus maps. And then, the

refinement focus maps are obtained for image fusion. This refinement focus maps

are more accurate than the original focus maps which can improve the fusion result.

• A medical image fusion using segment graph filter and sparse representation has

also been proposed in Chapter 4. Different modalities are used to capture different

informations. Medical image fusion is applied to fuse different modalities medical

images to obtain a fused medical image for better diagnosis and treatment. The base

images are extracted from each source image by using structure-preserving filter, and

then detail images are obtained source images by subtracting its base images. The

base images and the detail images are fused by using different fusion rules. The

fused image is obtained by merging the fused base image and the fused detail image.
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[9] Aurélie Bugeau, Marcelo Bertalmı́o, Vicent Caselles, and Guillermo Sapiro. A com-

prehensive framework for image inpainting. IEEE Transactions on Image Processing,

19(10):2634–2645, 2010.

[10] Peter J Burt and Edward H Adelson. Merging images through pattern decomposi-

tion. In Applications of Digital Image Processing VIII, volume 575, pages 173–182.

International Society for Optics and Photonics, 1985.

[11] Peter J Burt and Raymond J Kolczynski. Enhanced image capture through fusion.

In Computer Vision, 1993. Proceedings., Fourth International Conference on, pages

173–182. IEEE, 1993.

[12] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal

component analysis? Journal of the ACM (JACM), 58(3):11, 2011.

[13] T Chan and J Shen. Local inpainting models and tv inpainting. SIAM J. Appl.

Math, 62(3):1019–1043, 2001.

[14] Wen Chen and Xudong Chen. Focal-plane detection and object reconstruction in

the noninterferometric phase imaging. JOSA A, 29(4):585–592, 2012.

[15] Yin Chen and Rick S Blum. A new automated quality assessment algorithm for

image fusion. Image and vision computing, 27(10):1421–1432, 2009.



BIBLIOGRAPHY 83

[16] Antonio Criminisi, Patrick Perez, and Kentaro Toyama. Object removal by

exemplar-based inpainting. In Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on, volume 2, pages II–II.

IEEE, 2003.

[17] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object re-

moval by exemplar-based image inpainting. IEEE Transactions on image processing,

13(9):1200–1212, 2004.

[18] Sudeb Das and Malay Kumar Kundu. Nsct-based multimodal medical image fu-

sion using pulse-coupled neural network and modified spatial frequency. Medical &

biological engineering & computing, 50(10):1105–1114, 2012.

[19] Sudeb Das and Malay Kumar Kundu. A neuro-fuzzy approach for medical image

fusion. IEEE transactions on biomedical engineering, 60(12):3347–3353, 2013.

[20] Liang-Jian Deng, Ting-Zhu Huang, and Xi-Le Zhao. Exemplar-based image inpaint-

ing using a modified priority definition. PloS one, 10(10):e0141199, 2015.

[21] David L Donoho and Yaakov Tsaig. Fast solution of -norm minimization problem-

s when the solution may be sparse. IEEE Transactions on Information Theory,

54(11):4789–4812, 2008.

[22] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sam-

pling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International

Conference on, volume 2, pages 1033–1038. IEEE, 1999.

[23] Michael Elad and Michal Aharon. Image denoising via sparse and redundant rep-

resentations over learned dictionaries. IEEE Transactions on Image processing,

15(12):3736–3745, 2006.



BIBLIOGRAPHY 84

[24] Michael Elad, J-L Starck, Philippe Querre, and David L Donoho. Simultaneous car-

toon and texture image inpainting using morphological component analysis (mca).

Applied and Computational Harmonic Analysis, 19(3):340–358, 2005.

[25] Gilberte Emile-Male. The restorer’s handbook of easel painting, volume 31. Van

Nostrand Reinhold New York, 1976.

[26] Mohamed-Jalal Fadili, J-L Starck, and Fionn Murtagh. Inpainting and zooming

using sparse representations. The Computer Journal, 52(1):64–79, 2007.

[27] Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-

preserving decompositions for multi-scale tone and detail manipulation. In ACM

Transactions on Graphics (TOG), volume 27, page 67. ACM, 2008.

[28] Muhammad Shahid Farid, Arif Mahmood, and Somaya Ali Al-Maadeed. Multi-focus

image fusion using content adaptive blurring. Information Fusion, 45:96–112, 2019.

[29] Eduardo SL Gastal and Manuel M Oliveira. Domain transform for edge-aware image

and video processing. In ACM Transactions on Graphics (ToG), volume 30, page 69.

ACM, 2011.

[30] Tanaya Guha and Rabab K Ward. Learning sparse representations for human ac-

tion recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

34(8):1576–1588, 2012.

[31] Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and recent

advances. IEEE signal processing magazine, 31(1):127–144, 2014.

[32] Mohammad Bagher Akbari Haghighat, Ali Aghagolzadeh, and Hadi Seyedarabi.

Multi-focus image fusion for visual sensor networks in dct domain. Computers &

Electrical Engineering, 37(5):789–797, 2011.



BIBLIOGRAPHY 85

[33] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In European

conference on computer vision, pages 1–14. Springer, 2010.

[34] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th

International Conference on Pattern Recognition, pages 2366–2369. IEEE, 2010.

[35] M Hossny, S Nahavandi, and D Creighton. Comments on’information measure for

performance of image fusion’. Electronics letters, 44(18):1066–1067, 2008.

[36] Jianwen Hu and Shutao Li. The multiscale directional bilateral filter and its appli-

cation to multisensor image fusion. Information Fusion, 13(3):196–206, 2012.

[37] Xiaoli Huan, Beddhu Murali, and Adel L Ali. Image restoration based on the fast

marching method and block based sampling. Computer Vision and Image Under-

standing, 114(8):847–856, 2010.

[38] Rizwan Ahmed Khan, Hubert Konik, and Éric Dinet. Enhanced image saliency
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