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Compressive Sensing Based Low-Complexity
and High-Resolution Radar Signal

Processing Algorithms

（Abstract）
Radar is an object detection system utilizing radio waves to determine the range, angle,

or velocity of objects. A class of novel methods based on compressive sensing (CS) have been

proposed for digital radar signal processing to achieve a high resolution on both the range and

velocity joint estimation (i.e. the time sampling case) and the angle estimation (i.e. the spatial

sampling case). However, as will be discussed in detail below, the existing CS-based methods

suffer from a high computational complexity for reconstructing signals and a low accuracy for

non-Gaussian impulsive noise environment.

In view of this background, the purpose of this research is to develop a class of new CS-

based methods having higher resolution, less computational complexity and stronger robustness

against non-Gaussian impulsive noise than the existing CS-based methods. Specifically, both of

the time sampling case and the spatial sampling case will be intensively investigated, and the

main results and contributions are concentrated on the following aspects:

Firstly, for the time sampling case, the range and velocity joint detection problem is in fact a

two-dimensional (2D) problem characterized by a matrix representation, while the existing CS-

based methods treated this problem by first vectorizing the 2D matrix representation into a 1D

vector representation and utilizing the well-known CS algorithms which is originally developed

for 1D signal reconstruction. It is the dimension transformation (vectorization) operation that

results in a huge measurement matrix for the resultant CS problem and thus causes a high

computational complexity. To overcome this difficulty, 2D-CS algorithms are first proposed that

can directly solve a 2D signal reconstruction problem, and then 2D-CS-based methods for the

range and velocity joint detection problem are established so that the dimension transformation

operation is no longer required and the computational complexity can be reduced largely.

Moreover, since the existing CS-based methods for time sampling have been developed based

on the assumption of Gaussian noise environment, the existing methods usually suffer from a

performance deterioration in a non-Gaussian impulsive noise environment. Therefore, robust-

2D-CS-based methods are proposed by introducing new robust cost functions in the 2D-CS-

based algorithms so that the performance of CS-based methods for non-Gaussian impulsive

noise environment can be significantly improved.

For the spatial sampling case, the existing CS-based methods achieve the high accuracy
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of direction-of-arrival (DOA) estimation by gridding densely and searching the entire range of

interest, which results in a huge measurement matrix. In addition, the inversion operation for

this measurement matrix is required in each iteration of the algorithms. These two problems

lead to the high complexity of the existing CS-based methods for DOA estimation. In order

to avoid the first problem caused by the dense griding, a two-step method is proposed: first,

the range of interest is divided into a relatively low-resolution grid and the conventional beam

former is used to quickly identify the candidate or potential areas where true targets may exist;

then the candidate areas obtained in the first step are divided into a denser sampling grid and

the ℓ2,1-norm minimization algorithm is utilized to locate the targets with a high-resolution.

For the second problem of inversion operation, a new adaptive algorithm is proposed without

involving any matrix inversion operation.

Simulation results show that the proposed methods have much lower complexity and higher

accuracy than the existing CS-based methods.
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Chapter 1

Introduction

1.1 Background and motivation

Radio detection and ranging (Radar) is a target detection system utilizing radio waves to de-

termine the range, angle, or velocity of targets. It has been applied in many fields, such as

ground penetrating radar, ballistic missile defense, air-traffic control, law-enforcement, highway

safety and automatic driving [1–4]. The demand for modern radar systems with high resolution

is increasing. The higher bandwidth radar signals and more antenna are required, which brings

the high sampling rates and large sensor array, and according by the large amount of sampled

data require a vast memory capacity [5, 6].

In contrast, only few targets, or sources are concerned in practice, such as some airplanes

in the wide sky, thus the final output is often sparse. An example of sparse scene is shown in

Fig.1.1. It is not efficient to detect the sparse target utilizing a large amount of sampled data.

Therefore, the topic of developing new radar signal processing algorithms to accomplish the high

resolution with a few sampled data has attracted considerable attention.

Figure 1.1: The delay-Doppler map.

The research in this thesis is focused on two missions: (1) delay-Doppler joint estimation by

ultra wide band (UWB) radar (range and velocity detection) and (2) direction-of-arrival (DOA)
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estimation by multiple-input-multiple-output (MIMO) radar (angle detection). They do not

only represent the hot research topics nowadays but also are of crucial importance for human

societies, as argued in this chapter.

The sampled data of echoes corresponding to different pulses is used for the delay-Doppler

joint estimation. This sampling process is called “time sampling”. It is widely believed that

the range resolution is significantly proportional to the bandwidth of the transmitted signal [7].

With the development of wireless communication, X-band or Ku-band signal cannot satisfy the

demand for resolution for range detection. The use of the UWB can greatly improve the range

resolution to meet modern industrial demand. Additionally, the UWB signal can improve the

robustness against the multipath interference [8]. However, according to the Shannon-Nyquist

theorem, the bandwidth of the signal is wider, the faster sampling rate is required. Therefore,

the sampling rate for UWB radar systems is a large cost, even difficult to achieve for the analog-

to-digital converter (ADC), and a large memory capacity for large amounts of sampled data is

required [5,6]. There, the traditional sampling method based on the Shannon-Nyquist theorem

is difficult to satisfy the requirement of UWB signals.

The data sampled by multiple antenna is used for DOA estimation. This sampling process

is called “spatial sampling”. Multiple antennas are used in MIMO radar systems, and each

transmitting antenna radiates the electromagnetic wave independently with other transmitting

antennas, while each receiving antenna receives these signals. Unlike the standard phased-array

radar system which also uses multiple antennas, the wave transmitted by MIMO radar systems

may be chosen quite freely. This waveform diversity makes the MIMO radar system has better

performance for, such as, spatial resolution, robustness to interference and/or probability of

detection, than the standard phased-array radar system. Due to its excellent performance,

MIMO radar systems have been receiving increasing attention in last few decades. Many high-

resolution DOA algorithms for the MIMO radar systems have been documented in the literature

(see, e.g., [9,10], and the references therein), and most of these methods depend on the statical

properties of the collected data. Thus, a sufficiently large number of snapshots are required for

accurate estimation [9–13]. However, in many practical applications, due to various physical

constraints, only a few snapshots or, in the worst case, a single snapshot can be used for DOA

estimation [14–16]. For example, in automotive radar systems, adaptive cruise control (ACC)

and/or emergency brake assist (EBA) require the real-time estimation of the distances and

speeds with respect to other targets as well as the DOAs. Due to the rapid change of the

relative positions, the number of available snapshots is heavily restricted. Another example can

be found in sonar processing where the physical constraints, such as sound speed, limits the
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number of available snapshots. Thus, the traditional high-resolution DOA algorithms cannot

satisfy the requirement for the limited snapshots. Therefore, it is of great interest to detect the

sparse targets with high resolution more effectively and efficiently by establishing new methods

to reduce the large amounts of sampled data.

In the last decades, an innovative signal processing method called “compressive sensing”

or “compressed sensing” (CS) is proposed in [17–19]. In a system of underdetermined linear

equations — there are fewer equations than unknowns, if there are a lot of zeros in the solution,

CS is a powerful mathematical tool to solve it. Such a solution is called “sparse” solution. Hence,

CS is able to reduce the sampling data which can be represented as sparse vector in a specific

domain [17–20]. The CS-based methods have been first applied to radar signal processing for

time sampling as well as for spatial sampling [6].

1.1.1 Time sampling

For the time sampling case, a class of novel sampling methods which are evolved from CS

theory have attracted considerable research attention, such as the random convolution (RC)

[21], the random filter (RF) [22], the random demodulation (RD) [23–26], and the modulated

wideband converter (MWC) [27–29]. The RD and MWC can both be thought of as being based

on the underlying concept of the RF and RC. These sampling methods enable the successful

reconstruction of signals by sampling at the sub-Nyquist rate, which is slower than the Nyquist

rate. The RD shares the similar structure to the MWC, while the RD is a single channel sub-

Nyquist sampling strategy and the MWC is a multi-channel sub-Nyquist sampling strategy [30].

Another sampling method based on CS is nonuniform sampling (NUS) method [31–35]. The

sampling interval of the NUS method is controlled by an unequal interval clock. But the random

change of the sampling rate is quite difficult to implement on hardware. Among them, the RD

is a very attractive technique in microwave spectral analysis [36], because it is very simple and

its prototype hardware has already been developed in [37,38].

A lot of CS-based algorithms have been proposed to reconstruct the signal sampled by sub-

Nyquist sampling rate [39–43]. Orthogonal matching pursuit (OMP) and compressive sampling

matching pursuit (CoSaMP) algorithms [39] are the greedy method that builds up the support

set of the reconstructed sparse vector iteratively by adding indices of the elements that are non-

zero to the current support set at each iteration. Iterative hard thresholding (IHT) algorithm [40]

is a thresholding method that keeps the indices of the non-zero elements of the sparse vector by a

hard thresholding at each iteration. Zero-attractive projection (ZAP) algorithm [41] utilizes the

zero attraction term to attract the vector from a least-square solution to a sparse solution. The
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feasibility of CS-based algorithms for delay-Doppler joint estimation has been shown in [44–50].

Although these methods estimate both the delay and Doppler frequency from few sampled data,

there are still the following problems:

• The traditional CS-based algorithms only consider the one-dimensional (1D) problem,

while the delay-Doppler joint estimation is a two-dimensional (2D) problem. In order to

use the 1D CS-based algorithms to solve this the 2D problem, one has to stack the 2D signal

into a huge column vector based on the vector space, and then recover the huge vector in

the 1D domain. However, such an operation increases the complexity and memory usage

exponentially [51,52].

• The traditional CS-based algorithms only consider the Gaussian noise environment. Gaus-

sian noise model is an ideal model, which does not consider the impulsive noise caused

by atmospherics (lighting), meteor train echoes and so on [53]. In UWB radar systems,

the accuracy of the traditional CS-based algorithms is easily deteriorated by these impulse

noises.

1.1.2 Spatial sampling

For the spatial sampling case, a novel class of DOA estimation methods based on CS theory has

been proposed for the limited snapshots. In the worst case, i.e., under the assumption that only

a single snapshot is available, the single snapshot DOA estimation problem can be formulated

as a problem of finding a sparse representation of Single Measurement Vector (SMV) (i.e., a

vector having small number of nonzero entries) [54, 55], and ℓ1-singular value decomposition

(ℓ1-SVD) algorithm is recognized as a powerful sparse recovery algorithm for DOA estimation

with single snapshot [56]. It incorporates the SVD step of the subspace algorithms into a sparse

recovery method with ℓ1-norm penalty so that closely spaced correlated sources can be dealt

with effectively.

On the other hand, for the case having a few snapshots (more than one single snapshot,

but much fewer than that required by the traditional methods) available, in order to improve

the accuracy, the DOA estimation problem can be formulated as a Multiple Measurement Vec-

tors (MMV) problem in an over-complete dictionary, i.e., the problem of finding joint-sparse

representations (matrices having small number of rows that contain nonzero entries) of MMV

(see, e.g., [10, 55]). Based on MMV framework, some CS-based algorithms have recently been

proposed for DOA estimation with a few snapshots by essentially generalizing the methods for

the SMV case to the MMV case [54–56]. The joint ℓ2,0 approximation DOA (JLZA-DOA) al-
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gorithm solves the joint-sparse solution by minimizing a mixed ℓ2,0-norm approximation. It has

been demonstrated by numerical simulations that the JLZA-DOA algorithm can achieve high-

resolution by using only a small number of snapshots [10]. Along the similar line, other kinds

of extensions of the ℓ1-SVD algorithm have also been reported [57, 58]. The Noise Subspace

Weighted ℓ1-ℓ2 (NSW-ℓ1-ℓ2) algorithm [57] is established based on weighted ℓ1 minimization,

with the weights determined by utilizing the orthogonality between the noise subspace and the

measurement matrix. In [58], the Capon spectrum is employed to design a weighted ℓ1-norm

penalty to get a better ℓ1-norm approximation and further enforce the sparsity so that better

DOA estimation performance can be achieved.

Although these methods can estimate DOA from limited snapshots, there are still the fol-

lowing problems:

• All these algorithms have to search the potential DOAs or areas actually containing sources

over the entire range of interest by a convex optimization algorithm. To obtain a high

resolution result, the entire range of interest should be divided into a dense sampling

grid, which requires operation of a measurement matrix with very high dimension in every

iteration and thus results in a rather heavy computational cost.

• Since the number of antennas becomes very large in MIMO systems, the amount of data

that need to be processed also becomes very huge. It results in a huge measurement

matrix, whose matrix inversion operation is required in each iteration for these CS-based

algorithms. Thus, the computational cost of the CS-based algorithms is still rather heavy

for MIMO systems, although only a small number of snapshots are used [59].

1.2 Main contributions

In this thesis, we focus on reducing the complexity and improving accuracy of the CS-based

algorithms for high-resolution radar signal processing. As with previous studies, we divide radar

signal processing into time sampling case for delay Doppler joint estimation and spatial sampling

case for DOA estimation, and study them separately.

For the time sampling case, in order to reduce the complexity caused by dimension transfor-

mation, a class of the 2D-CS-based algorithms is established for delay Doppler joint estimation

whose data is sampled by the RD with a low rate ADC. Since the 2D-CS-based algorithms solve

the 2D data model without stacking the matrix of 2D signals into a huge column vector, the

memory requirement and complexity can be reduced greatly.
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In addition, in order to improve the accuracy in non-Gaussian impulsive noise environment,

the robust 2D-CS-based algorithms will be developed based on the proposed 2D-CS-based algo-

rithms. These extended algorithms use the robust cost functions which provide efficiency when

the data is contaminated by a small noise and reliable albeit not optimal behavior when the

data is contaminated by impulsive noise.

For the spatial sampling case, in order to overcome the difficulty of high computational

complexity caused by the dense sampling grid, we develop a two-step method. In the first stage,

the range of interest is divided into a relatively low-resolution grid, and the conventional beam

former is used to quickly identify the candidate or potential areas where true sources may exist.

In the second stage, the candidate areas obtained in the first stage are divided into a denser

sampling grid, and the CS-based method is utilized to locate the targets with a high-resolution.

Another method to reduce the complexity is using the adaptive filtering algorithms, e.g.,

the ℓ0-least mean square (ℓ0-LMS) algorithm [41, 60]. It uses a row in measurement matrix in

each iteration that leads a low complexity, and has higher robustness against noise than other

CS-based algorithms. However, it is proposed for a single snapshot vector (SMV) problem,

which corresponds to DOA estimation with a single snapshot [61, 62]. Motivated by the ℓ0-

LMS algorithm, a new adaptive filtering algorithm, e.g., ℓ2,0-LMS algorithm is proposed for the

DOA estimation with small snapshots. The adaptive filter frame makes the proposed algorithm

inherit the low complexity, and the mixed norm (approximate ℓ2,0-norm) is used to improve the

accuracy in low signal-to-noise ratio (SNR) environment.

1.3 Thesis outline

The thesis is organized in the following chapters. In Chapter 2, the mathematical model of delay

Doppler joint estimation and the CS based RD sampling method are introduced. In Chapter 3,

the 2D-CS-based algorithms which use a matrix norm instead of the vector norm to reduce the

complexity are proposed. In Chapter 4, the non-Gaussian impulsive noise model are introduced,

and the robust 2D-CS-based algorithms which is extended from 2D-CS-based algorithms are

proposed. In Chapter 5, the mathematical model of DOA estimation with small snapshots

is presented. In Chapter 6, in order to reduce the complexity and improve the accuracy, the

Dimension-Reduced CS-based algorithm is proposed for DOA estimation with small snapshots.

In Chapter 7, the ℓ2,0-LMS algorithm based on adaptive filter is proposed to avoid matrix

inversion operation. In Chapter 8, the main results and contributions are briefly summarized.

In addition, some possible future topics are also discussed.
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Chapter 2

Signal model for delay Doppler joint

estimation with sub-Nyquist rate

The modern pulse Doppler radar is built by a UWB signal generator, transmitter, receiver,

antenna, and signal processing, which is shown in Fig. 2.1. In this chapter, the delay Doppler

joint estimation for pulse Doppler radar is introduced.

2.1 Mathematical model for delay Doppler joint estimation

2.1.1 Range and velocity estimation

In general, radar system transmits a pulse signal to achieve the delay-Doppler map which shows

the radial distance and radial velocity information of targets. The time which takes one pulse to

travel the two-way path between antenna and the kth target is the delay τk, where k = 1, ...,K,

K is the number of the targets. The delay τk is measured to compute the radial distance R

between the kth target and radar. Since the velocity of the electromagnetic waves is a constant

�����������	�
�	 �	����

�	

�������	��������	������ �������

�����

Figure 2.1: A simplified radar block diagram
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value, i.e., c ≈ 3× 108 m/s, the distance R can be computed by

R =
c

2
τk. (2.1)

where τk is in seconds, and R is in meters.

The velocity information of the kth target is achieved by Doppler effect, which is the change

in frequency of an electromagnetic waves for the target moving relative to antenna. It can be

written as follows:

νk =

(
c+ vk
c+ vs

)
ν0 (2.2)

where ν0 is the frequency of transmitted signal, νk is the changed frequency termed ”Doppler

frequency”, vk denotes the velocity of the kth target, and vs denotes the velocity of radar. Since

in this paper we only consider the monostatic radar whose antenna is stationary in general, vs

equals to 0.

2.1.2 Ambiguity function

In pulse radar system, the ambiguity function is used to show the distortion of a returned pulse.

Assume that the transmitted pulse signal is x(t), and it is reflected by one target, then the

detected signal which is decided by delay (τ) and Doppler frequency (ν) which can be written

as follows:

xτ,ν = x(t− τ)ej2πνt. (2.3)

In the noise-free environment, the received signal is a copy of the original pulse but delayed

by a certain time τ (delay) related to the target’s range and shifted by a certain frequency

ν (Doppler frequency) related to the target’s velocity. However, it is difficult to solve τ or ν

from xτ,ν directly, because noise, such as Thermal noise, clutters and interference, exists in the

radar system. In general, the correlation between the detected signal and transmitted signal is

used to determine whether there is a target. Unfortunately, this method may lead to a wrong

position, which are highly correlated with the detected signal. In this sense, the detected signal

may be ambiguous. In other words, the ambiguous may occurs when there is a high correlation

between x(τ, ν) and x(τ ′, ν ′) while ((τ, ν) ̸= (τ ′, ν ′)). The ambiguity function is used to define

the ambuguous quantitatively. It can be written as follows:

|χ(τ, ν)|2 =
∣∣∣∣∫ x(t)x∗(t− τ)ej2πνt

∣∣∣∣2. (2.4)
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It is similar to a match filter which calculates the correlation between x(t, 0) and x(t − τ, ν).

Only when (τ, ν) = (0, 0), |χ(τ, ν)|2 is highest. With the same (τ, ν), the peak width of |χ(τ, ν)|2

is narrower, the resolution of x(t) is better.

2.1.3 Linear frequency modulation signal

Different transmitted pulse shapes result in different ambiguity functions. The linear frequency

modulation (LFM) is often used in radar transmitted pulse signal due to its better ambiguity

function. The LFM signal increases or decreases its frequency with the change of time, linearly.

A LFM radar signal can be written as follows:

xT (t) =
1√
Tp

rect

[
t

Tp

]
e
j B
Tp

πt2
, (2.5)

where B is the bandwidth of transmitted signal, Tp is the pulse width, t is the time, and rect
[

t
Tp

]
is a step signal which is shown as

rect

[
t

Tp

]
=

{
1,

∣∣∣ t
Tp

∣∣∣ ≤ 1;

0, elsewise.
(2.6)

The shape of N(N = 4) pulses with the pulse repetition frequency (PRI) is shown in Fig. 2.2.

Its bandwidth, pulse width and PRI are set as 100KHz, 50µs and 0.1ms, respectively. In detail,

one pulse shape in time domain and in time-frequency domain are shown in Fig. 2.3 and Fig.

2.4, respectively. In Fig. 2.3, the up figure is the real part of the signal and the bottom figure

is the imaginary part. The x-axis denotes the time, and the y-axis denotes the amplitude. It

can be found that the frequency increases in pulse width Tp while the signal is zero when t is

not in Tp. In Fig. 2.4, x-axis denotes the time, y-axis denotes the frequency, and color denotes

the amplitude. Red denotes the strong amplitude while blue denotes the weak amplitude. It is

obvious to see that the frequency whose color is red increases with the time in Tp, linearly. Such

a change in frequency can be used to characterize signals at different points in time during one

Tp. Therefore, the time resolution can be improved.

The improved resolution is shown in the ambiguity function of the LFM signals. Substituting

Eq. (2.5) into Eq. (2.4), the ambiguity function of the LFM signals can be written as

|χ(τ, ν)|2 = 1

Tp

∣∣∣∣∫ rect

[
t

Tp

]
rect

[
t− τ

Tp

]
e
−j B

Tp
πt2

e
−j B

Tp
π(t−τ)2

ej2πνt
∣∣∣∣2. (2.7)
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Figure 2.2: Coherent pulse (N=4)
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Figure 2.3: LFM signal in time domain
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Finishing the integration process yields:

|χ(τ, ν)|2 =

∣∣∣∣∣∣
(
1− τ

Tp

) sin
(
(πBτ + πTpν)

(
1− τ

Tp

))
(πBτ + πTpν)

(
1− τ

Tp

)
∣∣∣∣∣∣
2

. (2.8)

If only consider the delay τ , Eq. (2.8) can be simplified as

|χ(τ, 0)|2 =

∣∣∣∣∣∣
(
1− τ

Tp

) sin
(
(πBτ)

(
1− τ

Tp

))
(πBτ)

(
1− τ

Tp

)
∣∣∣∣∣∣
2

. (2.9)

The first null occurs at

τ ≈ 1

B
. (2.10)

In other words, the resolution of range (delay) equals to 1
B , approximately. The ambiguity

function of one pulse signal which is not modulated is shown as

|χ(τ, 0)|2 =
(
1− τ

Tp

)2

. (2.11)
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Figure 2.5: One pulse ambiguity plot and LFM ambiguity plot (delay)

It can be found that the value of the ambiguity function of the unmodulated signal is depend

on the pulse width Tp, while the one of LFM is depend on the bandwidth B. In real applications,

the pulse width cannot be shortened too much because a too short pulse cannot keep its energy
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in the air. Thanks for a wide-band signal even UWB signal generator having been developed,

increasing the bandwidth is an effect method to improve the resolution of range (delay).

In Fig. 2.5, the up figure and bottom figure show one pulse ambiguity function and LFM

ambiguity function, respectively, whose pulse width is the same. It shows that LFM has a more

narrow anbiguity function than one pulse.

The resolution of Doppler frequency is introduced in the following. Since the frequency of

the LFM signal is changed with the time, the Doppler frequency is difficult to be achieved by

only one pulse. Hence, multiple pulses are transmitted to detect the target’s velocity. The

different received signals have different phases due to the Doppler effect caused by the moving

of targets. It should be noted that the moving distance is too small to cause the change of the

delay usually, because the sample time is very short. But a large change of the phase of the

echo signals corresponding to different pulses will occur when the frequency is high.

Hence pulse accumulation technology which accumulates the change of phases is used to

detect the target’s velocity. It is shown in Fig. 2.6. Three echo signals are reflected by one

target. The phases are treated as the amplitude of the correlation. In other words, the amplitude

of the correlation is largest when fd = 0. Then this three pulses build up a sine function which

is the dotted line. The frequency of the dotted line can be calculated by Fourier transform. The

frequency of the sine function and the velocity of target is one to one correspondence.

Figure 2.6: Pulse accumulation with 4 pulses

2.1.4 Echo signal model

Consider the radar transmits N pulses to detect K targets in the search space. This procedure is

similar to the problem of identification of underspread linear systems (ULSs) [63]. The received
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signal has three important parameters to be solved: the amplitude αk, which is related to the

radar cross section (RCS) of kth target; the delay τk, which is related to the range of kth target;

and the Doppler frequency νk, which is related to the velocity of kth target. It can be shown as:

u(m,n) =
N∑

n=1

K∑
k=1

αkxT (tm − τk) e
−j2πνknTPRI , (2.12)

where TPRI is the PRI, m = 1, ...M , M is the number of the sampled data of the echo corre-

sponding to one pulse. Then the estimated result of the three important parameters is shown in

the delay-Doppler map with the M ×N grid. The grid is decided by the resolution of delay and

Doppler frequency. The delay-Doppler map is shown in Fig. 2.7. The x-axis denotes the Doppler

frequency domain and the y-axis denotes the delay domain. The value in the grid denotes the

αm,n. Ideally, if there is a target with τm and νn, αm,n ̸= 0, otherwise αm,n = 0. To achieve

the delay-Doppler map, the received data is arrayed as the radar cube which is shown in Fig.

2.8. The received data from one pulse is arrayed as one column, and each of these row vectors

contains received data from different pulses corresponding to the same delay bin.

Figure 2.7: Delay-Doppler map Figure 2.8: Two-dimensional radar data cube

Based on the radar data cube, i.e., the matrix representation of received data, the sampled

data model can be simply written in the matrix form as

U = ΨSEH , (2.13)
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where

U =


u (1, 1) . . . u (1, N)

...
. . .

...

u (M, 1) · · · u (M,N)

 , (2.14)

S =


α1,1 . . . α1,N

...
. . .

...

αM,1 · · · αM,N

 , (2.15)

denotes the delay-Doppler map, αm,n corresponds the value of the grid in the mth row and the

nth column,

Ψ =


xT (t1, τ1) . . . xT (t1, τM )

...
. . .

...

xT (tM , τ1) · · · xT (tM , τM )

 , (2.16)

is the dictionary matrix including all possible delay, and

EH =


e−j2πν1TRIP . . . e−j2πν1NTRIP

...
. . .

...

e−j2πνNTRIP · · · e−j2πνNNTRIP

 (2.17)

is the twiddle factor, which including all possible Doppler frequency. Once the matrix S is solved

from U, the delay τ and the Doppler frequency ν of targets can be known, since the nonzero

αm,n means that there is a target with τm and νn.

2.2 Random demodulation

The Nyquist sampling theory indicates the lowest sampling rate that a discrete sampled data to

reconstruct all the information from a continuous-time signal of finite bandwidth. According to

the Nyquist sampling theory, if an analog signal x(t) has the max frequency BHz, it is completely

determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart. In other

words, the signal should be sampled at fs > 2B at least for perfect reconstruction. Otherwise,

aliasing occurs as Fig. 2.9. The red curve is the real analog signal. The black dot is the data

sampled by a lower rate than Nyquist sampling rate. Thus, the reconstructed signal is shown

as the black dotted line. Obviously, it does not coincide with the red curve.

In this section, the RD method without Nyquist sampling rate is introduced. It is consisted

of a mixer, an integrator, a pseudo-random Bernoulli signal generator and a low-rate ADC. The

sampled data y(l) is created by the RD, Then the sparse information s is extracted from y(l) by

the digital signal processing (DSP), where l = 1, ..., L. The block diagram of the RD is shown

in Fig. 2.10.
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Before sampling by a low-rate ADC, the front-end of the RD has two main steps: demodu-

lation and integration (compression). First, an unknown continuous signal x(t) is demodulated

by a mixer with a white noise-like pseudo-random Bernoulli signal pn(t) ∈ ±1, which must be

faster than Nyquist rate of x(t). It avoids destroying the important information of x(t) by the

integrator in the next step. Thus the demodulated signal can be written as:

xp(t) = x(t) · pn(t). (2.18)

Then xp(t) is compressed by an integrator in integration part. The integrator, which can be

performed in the continuous-time in the discrete-time domain, makes one output pulse value to

be the integral of its input signal in L time. At last, the output signal is sampled by a low-rate

ADC at the sub-Nyquist rate L. The sampled data can be written as follows:

y(l) =

∫ ∞

−∞
xp(tτ )h(t− tτ )dtτ + w(l)

=

∫ ∞

−∞
x(tτ )pn(tτ )h(t− tτ )dtτ + w(l),

(2.19)

where t = lL, w[l] denotes the white Gaussian noise, and h(tτ ) is a step signal which is shown

as follows:

h(tτ ) =

{
1, (l − 1)L < tτ ≤ lL;
0, elseothers.

(2.20)

According to Nyquist-Shannon sampling theorem, the continuous signal x(t) can be rep-

resented by discrete finite elements x(m) = [x(1), x(2), ..., x(M)]T , where N is the number of

Nyquist samples which relates to the bandwidth. Similarly, pl(m) = [pl(1), pl(2), ..., pl(M)]T .

Then we achieve the matrix representation of the demodulated signal which is shown as follows:

xp = Px, (2.21)

Figure 2.9: Aliasing occurs when sampling rate is too slow
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Figure 2.10: The block diagram of RD

where P = diag (pl(m)). Then the sampled data y(l) can be written as follows

y(l) =

mL∑
t=(l−1)L+1

pl(t)x(t) + w(l). (2.22)

The above equation can be written as the matrix representation which is written as follows:

ysa= HPx+w, (2.23)

where ysa = [y(1), y(2), ..., y(L)], w denotes the noise vector, and the integrator matrix H can

be shown as follows:

H =



L︷︸︸︷
1...1

L︷︸︸︷
1...1

. . .
L︷︸︸︷

1...1,


(2.24)

where L = M/L. The discrete sampled data ysa is characterized as a linear transformation of

the vector x, thus, ysa keeps all information of x.

In the UWB radar systems, the received signal is sampled by the RD whose demodulation

signal pl(m) is the same in each pulse, thus it can be written as follows:

X = HPU+W = HPΨSEH+W. (2.25)

The goal is estimating S ∈ CM×N from X ∈ CL×N which is buried in white Gaussian noise
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W ∈ CL×N .

2.3 Compressive sensing

In this section, a brief of compressive sensing is given. In many practical problems of signal

processing, reconstructing a signal from measured data is an important task. Assuming that the

measurement method is linear, which is very common, the problem results in solving a linear

system of equations. It can be shown as:

Ax = y, (2.26)

where matrix A ∈ CM×N models the linear measurement process, vector y ∈ CM×1 denotes the

measured data, ,vector x ∈ CN×1 denotes the unknown signal, and M < N . In this equation,

there are infinitely many solutions since the number of equation (M) is smaller than the number

of the unknowns (N). The task of CS is to find the sparse solution from the infinitely many

solutions.

2.3.1 Sparse signal

The sparse signal means that most entries are zeros in the signal. In most practical applications,

the signal can be repressed as a sparse signal by some particular basis, such as Fourier transform

basis, wavelet transform basis, Hartley transformation basis, etc. It explains the effectiveness of

the compression techniques for JPEG, MP3, etc.

For example, the time domain and frequency representations of an audio signal ”prince”

spoken by a lady is shown as Fig. 2.11 and Fig. 2.12, respectively. The signal in frequency

domain becomes pulse in some taps while others are close to zero. Further, Fig. 2.13 shows

the same signal in time-frequency domain. The white part means that there is zero coefficient

in this blog, while the dark part means that there is non-zero coefficient in this blog. It can

be found that most positions are white, which means that only a few non-zero coefficient exists

in the time-frequency domain. Thereby, a non-sparse signal has a sparse representation by a

specific transformation, such as x = Ψs, where Ψ denotes the specific transformation basis, and

s denotes the sparse signal. Hence, Eq.(2.26) can be written as follows:

Ax = AΨs = y, (2.27)

Then AΨ in Eq.(2.27) equivalents to the measurement matrix A in Eq.(2.26), and s in Eq.(2.27)

equivalents to the sparse signal x in Eq.(2.26). Therefore, Eq.(2.27) equivalents to Eq.(2.26).
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In the sparse signal, only a few tap whose value is not zero is our concern. In radar system,

the number of target is much fewer than the search space, so that it also can be considered

as a spares signal. Since most zero taps can be set to zero simply, recovering all entries is not

necessary. Therefore, it is easy to know that recovering a sparse signal from a large number

of measured data is not effective. CS a efficient method to search the sparse solution from the

reduced sampled data by solving the underdetermined linear question Eq. (2.26).

2.3.2 Sparse constraint

In CS theory, the sparse solution is searched by a sparse constraint, which relates to norm. In

related areas of mathematics, a norm is used to express a strictly positive ”length” or ”size” to

each matrix. For a vector x = [x1, ..., xL], the most common norms are listed as follows:

ℓ1-norm: ∥x∥1 =
L∑
l=1

|xl|;

ℓ2-norm: ∥x∥2 =

√
L∑
l=1

|xl|2;

ℓp-norm: ∥x∥p =
[

L∑
l=1

|xl|p
]1/p

, (0 < p < 1);

and ℓ0-norm which is not actually a norm. Here, ℓ0-norm is defined as the number of non-zero

elements in a vector x.

The matrix norm is a natural extension of the vector norms. For a matrix x = [x1, ...,xN ],

where xn = [x1,n, ..., xM,n]
T , the most common norms are often defined as follows:

ℓ1-norm: ∥X∥1 =
M∑

m=1

N∑
n=1
|xmn|;

ℓF -norm: ∥X∥F =

√
M∑

m=1

N∑
n=1
|xmn|2;

ℓp-norm: ∥X∥p =
[

M∑
m=1

N∑
n=1
|xmn|p

]1/p
, (0 < p < 1);

and ℓ0-norm: the number of non-zero elements in a matrix X, where ℓF -norm denotes

Frobenius norm which is corresponding to ℓ2-norm of vector.

The first algorithmic approach to recovery x from y is ℓ0-minimization, which can be shown

as follows:

minnimize∥x̃∥0 subject to Ax̃ = y. (2.28)

In words, the sparse solution is searched by ℓ0-minimizing, while satisfying Ax̃ = y. However,

ℓ0-minimization is an NP-hard problem in general. It is difficult to be solved.

CS points that instead of ℓ0-minimization, ℓ1-minimization is also an effective alternative.

The geometrical interpretation of different norms is shown as Fig. 2.14. In this figure, assume

that N = 2 and M = 1. The red line denotes the solution set.
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· In the left figure, the blue line denotes ℓp-norm, where 0 < p < 1. The intersection of the

solution set and ℓp-norm is x̃ℓp. It is sparse.

· In the middle figure, the blue line denotes ℓ1-norm. The intersection of the solution set

and ℓ1-norm is x̃ℓ1. It is also sparse.

· In the right figure, the blue line denotes ℓ2-norm. The intersection of the solution set and

ℓ2-norm is x̃ℓ2. It is not sparse.
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Figure 2.14: Geometrical interpretation of sparse constraint

It explains simply why ℓp-minimization and ℓ1-minimization can achieve the sparse solution

as the same as ℓ0-minimization, while ℓ2-minimization can’t. Futher, ℓ1-norm is an convex

function. The following problem can be solved by convex optimization effectively:

minnimize∥x̃∥1 subject to Ax̃ = y. (2.29)

However, in practical applications, the measured data is not slightly inaccurate due to the

noise. Hence, the following problem which is the quadratically constrained ℓ1-minimization is

often solved to find the sparse solution:

minnimize∥x̃∥1 subject to ∥Ax̃− y∥2 ≤ η. (2.30)

It is easy to know that Eq.(2.26) cannot be solved when A = 0 (0 means all elements in the

matrix are zero). Restricted Isometry Property (RIP) is an important property of A to ensure

the effectiveness of CS.

Define For a matrix A ∈ CM×N (M < N) with ℓ2-normalized columns. and for an integer
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scalar K ≤M . Assume that the sub-matrices AK contains K columns from A. Define δK make

(1− δK) ∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δK) ∥x∥22 (2.31)

to hold true for any choice of s columns, then A is said to have an s-RIP with constant δK . If

0 < δK < 1, Eq.2.26 can be solved by CS.

Proof Assume that there are x̃1 and x̃2 satisfying y = Ax̃ at the same time. We define

d = x̃1 − x̃2. Then

∥Ad∥22 = ∥Ax̃1 −Ax̃2∥22 = 0. (2.32)

Consinder Eq.(2.31), we can know that δK = 1, which conflicts with 0 < δK < 1. Thereby, when

0 < δK < 1, x̃1 is equal to x̃2 certainly, namely there is only one solution for Eq.(2.26).

2.3.3 Domain transformation

Recall the sampled data model Eq.(2.25) is a 2D problem. There are delay and Doppler frequency

information in matrix S, while the basic CS model Eq.(2.26) is only consider the 1D problem.

In order to solve Eq.(2.25) by CS, Eq.(2.25) should be written as the vector operation which is

shown as follows:
x = vec (X)

= vec
(
HPΨSEH +W

)
= vec

(
HPΨSEH

)
+ vec (W)

= Φs+w,

(2.33)

where x = vec (X), s = vec (S), and w = vec(W), vec(·) denotes the vectorization of a matrix

by stacking the columns of the matrix into a single column vector:

vec (A) =
[
a1,1, · · · , am,1, a1,2, · · · , am,2, · · · , a1,n, · · · , am,n,

]T
,

where ai,j represents A(i, j) and the superscript [·]T denotes the transpose. Therefore, some

properties of 1D CS are also suitable for Eq.(2.33).

The measurement matrix Φ = E ⊗ HPΨ, where ⊗ denotes the Kronecker product. In

mathematics, the Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary

size resulting in a block matrix. It is a generalization of the outer product (which is denoted

by the same symbol) from vectors to matrices and gives the matrix of the tensor product with

respect to a standard choice of basis. The Kronecker product is named after Leopold Kronecker.
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It has been used widely for multidimensional signal processing [64–66]. Let

A =


a1,1 · · · a1,N
...

. . .
...

aM,1 · · · aM,N

 , (2.34)

and

B =


b1,1 · · · b1,Q
...

. . .
...

bP,1 · · · bP,Q

 , (2.35)

Thus, A⊗B is defined by

A⊗B =


a1,1B · · · a1,NB

...
. . .

...

aM,1B · · · aM,NB

 , (2.36)

more explicitly:

A⊗B =



a1,1b1,1 a1,1b1,2 · · · a1,1b1,Q · · · · · · a1,Nb1,1 a1,Nb1,2 · · · a1,Nb1,Q

a1,1b2,1 a2,1b2,2 · · · a1,1b2,Q · · · · · · a1,Nb2,1 a1,Nb2,2 · · · a1,Nb2,Q
...

...
. . .

...
...

...
. . .

...

a1,1bP,1 a1,1bP,2 · · · a1,1bP,Q · · · · · · a1,NbP,1 a1,NbP,2 · · · a1,NbP,Q
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

aM,1b1,1 aM,1b1,2 · · · aM,1b1,Q · · · · · · aM,Nb1,1 aM,Nb1,2 · · · aM,Nb1,Q

aM,1b2,1 aM,1b2,2 · · · aM,1b2,Q · · · · · · aM,Nb2,1 aM,Nb2,2 · · · aM,Nb2,Q
...

...
. . .

...
...

...
. . .

...

aM,1bP,1 aM,1bP,2 · · · aM,1bP,Q · · · · · · aM,NbP,1 aM,NbP,2 · · · aM,NbP,Q



.

(2.37)

The Kronecker product will increase the memory requirement to save Φ.
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Chapter 3

2D-CS-based algorithms for delay

Doppler joint estimation

3.1 Matrix operation for CS

Although there are a lot of CS-based algorithms for 1D problem, the 2D problem cannot be

solved by these traditional CS-based algorithms directly. Therefore, in order to apply CS-based

algorithms, Eq. (2.25) should be reformed a 1D problem by Eq. (2.33) first. This dimensional

transform is easy to result in a new measurement matrix Φ = E⊗HPΨ with a large size, which

requires a huge storage space and high complexity. For example, for the data X ∈ C30×10 on

matrix HPΨ ∈ C30×100 and EH ∈ C10×10, it leads to the measurement matrix Φ ∈ C3000×100.

The unnecessary data is a heavy burden for storage, transmission and processing. In order to

avoid the dimensional transform operation, 2D-CS-based algorithms are proposed to estimate

the delay-Doppler map in Eq.(2.25) by solving the following matrix optimization problem:

S = min
∥∥X−HPΨSEH

∥∥2
F
+ λ∥S∥0, (3.1)

It is obvious that the ℓF -norm is to guarantee X = HPΨSEH (data-fitting term), while

sparse constraint ℓ0-norm is guarantee the sparsity of the solution (sparse term). Let G(S) =

λ∥S∥0, and F(S) =
∥∥X−HPΨEH

∥∥2
F
. Eq.(3.1) can be simply rewritten as S = minG(S) +

F(S). Firstly, we will focus on the problem of the data-fitting term: minF(S).

In 1D CS-based algorithms, the linear least square (LS) method is used to find the LS

solution of the data-fitting term in Eq.(2.33): x = Φs+w. The solution is searched by:

s(i+ 1) = s(i) +ΦH(x−Φs(i)), where s(i) denotes the solution in ith iteration. At last, each

element in s(i) is rearranged as the delay-Doppler map. In our proposed algorithm, the LS
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method is modified as follows:

S(i+ 1) = S(i) +∇F (S (i))

= S(i) + (HPΨ)HRE,
(3.2)

where R = X−HPΨS(i)EH denotes the residual at each iteration.

Theorem 1. Let S(i) = S(i− 1) + (HPΨ)HRE and s(i) = s(i − 1) + ΦHr, where r =

(x−Φs(i− 1)). Then for any i > 0,

s(i) = vec (S(i)) . (3.3)

Proof: Applying vec(·) on both sides of S(i) = S(i− 1) + (HPΨ)HRE, we have

vec (S(i)) = vec
(
S(i− 1) + (HPΨ)HRE

)
= vec (S(i− 1)) + vec

(
(HPΨ)HRE

) (3.4)

According to [67], we have

vec
(
(HPΨ)HRE

)
= (E⊗ (HPΨ)) vec (R)

= ΦHvec
(
X−HPΨS(i)EH

)
= ΦH

[
vec (X)− vec

(
HPΨS(i− 1)EH

)]
= ΦH [x−E⊗ (HPΨ)vec (S(i− 1))]

= ΦH [x−Φvec (S(i− 1))]

(3.5)

Using Eq. (3.5) into Eq. (3.4), it follows that

vec (S(i)) = vec (S(i− 1)) +ΦH [x−Φvec (S(i− 1))]

=
(
1−ΦHΦ

)
vec (S(i− 1)) +ΦHx

(3.6)

Let vec (S(i)) = c(i),
(
1−ΦHΦ

)
= a, and ΦHx = b, Eq. (3.6) can be simplified as follows:

c(i) = ac(i− 1) + b. (3.7)

Then the difference equation can be rewritten as follows:

c(i) = ai+1c(0) + b
i∑

n=0

an (3.8)

24



By the similar derivation, s(i) = s(i− 1) +ΦH (x−Φs(i− 1)) can be simplified as follow:

s(i) = ai+1s(0) + b

i∑
n=0

an (3.9)

Due to c(0) = s(0), vec (S(i)) = s(i) can be achieved.

Eq. (3.2) solves the ℓF -minimization. However, due to the lack of the sampled data, the

sparse solution cannot be searched by the projection method directly. Hence, minG(S) is then

used to attract the solution to be sparse. In the next section, four algorithms with different

approximate functions minG(S) are proposed, i.e., 2D zero-attractive projection (2D-ZAP)

algorithm, 2D iterate hard thresholding (2D-IHT) algorithm, 2D iterative shrinkage-thresholding

algorithm (2D-ISTA) and 2D fast iterative shrinkage-thresholding algorithm (2D-FISTA) to

search a sparse solution in Eq. (2.13), directly.

3.2 The proposed 2D-CS-based algorithms

3.2.1 2D zero-attractive projection (2D-ZAP) algorithm

Inspired by the traditional 1D-ZAP algorithm [41], the 2D-ZAP algorithm is proposed to esti-

mate the delay-Doppler map by solving Eq.(3.1).

Since ℓ0-minimization problem is NP hard, an approximate ℓ0-norm is used instead of ℓ0-

norm in the proposed 2D-ZAP algorithm, which can be written as follows:

∥S∥0 ≈
N∑

n=1

M∑
m=1

(
1− e−σ|snm|

)
, (3.10)

where snm is the element in S. The two sides of Eq. (3.10) is strictly equal when parameter

σ →∞. Thus, Eq. (3.1) can be rewritten as follows:

S = min
∥∥X−HPΨSEH

∥∥2
F︸ ︷︷ ︸

ℓF−norm

+λ

N∑
n=1

M∑
m=1

(
1− e−σ|snm|

)
︸ ︷︷ ︸

optimization ℓ0−norm

.
(3.11)

The optimization ℓ0-norm term is G(S) which can be solved the gradient descent method.

In gradient descent method, the gradient (derivative) ∇G (S) of the function G(S) at the
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current point is calculated as follows:

g(snm) = ∇G (snm)

=
∂1− e−σ|snm|

∂snm

= σ · sgn(snm)e−σ|snm|,

(3.12)

where sgn(x) is a sign function defined as follows:

sgn(x) =


1, x > 0;

−1, x < 0;

0, x = 0.

(3.13)

To further reduce the complexity, the first two terms of Taylor series expansion of exponential

function is used:

e−σ|snm| =
∞∑
q=0

(−σ |snm|)q

q!
≈ 1− σ |snm| . (3.14)

Then, a new point is updated along the negative of the gradient descent

g(snm) = −∇G (snm)

=


σ (σsnm + 1) , 1

σ ≤ snm < 0;

σ (σsnm − 1) , 0 < snm ≤ 1
σ ;

0, otherwise.

(3.15)

Finally, a local minimum of the function F(S) is achieved when the derivative of the function

F(S) =
∥∥X−HPΨSEH

∥∥2
F
is close to 0.

Compared with the 1D-ZAP algorithm, the proposed 2D-ZAP algorithm reduces the mem-

ory requirement with the same estimation accuracy. Assuming that HPΨ ∈ CN1×N2 and

E ∈ CM1×M2 . 1D-ZAP algorithm requires N1N2×M1M2 to store measurement matrix Φ, while

2D-ZAP algorithm only requires N1N2+M1M2. In addition, in the 1D-ZAP algorithm, the com-

plexity of the conjugate transpose Φv is O (N1N2 ×M1M2), while in the 2D-ZAP algorithm, the

conjugate transpose E and HPΨ are required, that the complexity is only O (N1N2 +M1M2).

The proposed 2D-ZAP algorithm reduces the memory requirement for measurement matrix and

the complexity of the conjugate transpose, which is valuable in the pulse Doppler radar system.

The proposed 2D-ZAP algorithm is listed in Algorithm 1.

3.2.2 2D iterate hard thresholding (2D-IHT) algorithm

Inspired by the traditional 1D-IHT algorithm [40], the 2D-IHT algorithm is proposed to estimate

the delay-Doppler map by solving Eq.(3.1) as same as the 2D-ZAP algorithm. To further reduce
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Algorithm 1 2D zero-attractive projection (2D-ZAP) algorithm

Input: measurement matrices H,P,Ψ,EH , sampled signal X, parameter λ, Maximum num-
ber of iterations imax,
Initialization: S0 = 0, i = 0, R = X,
Iteration:

S(i+ 1)← S(i) +HPΨHRE,
snm(i+ 1)← snm(i+ 1)− g(snm(i+ 1)), for n = 1, ..., N , m = 1, ...,M .
R← X−HPΨS(i+ 1)EH ,
i← i+ 1,

Until i = imax,
Output: estimated delay Doppler map S# = S(i).

the complexity of G(S), the above optimization problem can be solved as follows:

S(i+ 1) = Hσ

[
S(i) + (HPΨ)HRE

]
, (3.16)

where Hσ [s] is the nonlinear operation that sets s as zero when s is smaller than the threshold

value σ while keeps s when s is larger or equal to σ, which is shown as follows:

Hσ [s] =

{
s, s ≥ σ;

0, s < σ.
(3.17)

Another well-known nonlinear operator HK [S] is that keeps K largest absolute elements in S

and sets the other elements to zero. It can also be used when the target number K is known.

Otherwise, a too large K will lead to the high false alarm probability while a too small K will

lead to the low detection probability. However, it is difficult to know the target number before

the detection. Hence it can not be used for the pulse Doppler radar directly.

The 2D-IHT algorithm also reduces the memory requirement for the measurement matrix

and the complexity of the conjugate transpose, which is similar to the 2D-ZAP algorithm. The

proposed 2D-IHT algorithm is listed in Algorithm 2.

Algorithm 2 2D iterate hard thresholding (2D-IHT) algorithm

Input: measurement matrices H,P,Ψ,EH , sampled signal X, threshold value σ, Maximum
number of iterations imax,
Initialization: S0 = 0, i = 0, R = X,
Iteration:

S(i+ 1)← S(i) + (HPΨ)HRE,
S(i+ 1)← Hσ [S(i+ 1)],
R← X−HPΨS(i+ 1)EH ,
i← i+ 1,

Until i = imax,
Output: estimated delay Doppler map S# = S(i).
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3.2.3 2D iterative shrinkage-thresholding algorithm (2D-ISTA)

Inspired by the traditional 1D-ISTA algorithm [68], the 2D-ISTA algorithm is proposed to

estimate the delay-Doppler map by solving Eq.(3.1) as same as the 2D-IHT algorithm. In the

ISTA, Hσ [s] is replaced by the soft thresholding operator Sσ [s] which is defined as:

Sσ [s] =

{
sgn (s) · (|s| − σ) , |s| > σ;

0, |s| ≤ σ.
(3.18)

where σ is a small threshold value. Furthermore, the optimization problem can be solved as

follows:

S(i+ 1) = Sσ
[
S(i) +

1

L
(HPΨ)HRE

]
, (3.19)

where 1
L plays the role of a step-size to control the convergence rate. When 1

L → 0, Eq.(3.1)

can be solved accurately, while the convergence rate is very slow. In contrast, if a too large

1
L is chosen, overshoot will occur. It is well known that 1

L depends on the eigenvalues of

HPΨ and E. For the 1D-ISTA algorithm, L = 2λmax

(
ΦHΦ

)
, where λmax (·) denotes the

max eigenvalues of the matrix. In the 2D-ISTA algorithm, L = 2λmax

(
ΦHΦ

)
is replaced by

L = 2λmax

(
EHE

)
×λmax

(
HPΨΨHPHHH

)
. Thus, instead of the large matrix ΦHΦ, the max

eigenvalue of two small matrices EHE and
(
HPΨΨHPHHH

)
are calculated. As a result, the

unnecessary complexity can be avoided. The proposed 2D-ISTA is listed in Algorithm 3.

Algorithm 3 2D iterative shrinkage-thresholding algorithm (2D-ISTA)

Input: measurement matrices H,P,Ψ,EH , sampled signal X, parameter σ, Maximum num-
ber of iterations imax

Initialization: S0 = 0, i = 0, R = X, L = 2λmax

(
EHE

)
× λmax

(
HPΨΨHPHHH

)
,

Iteration:
S(i+ 1)← S(i) + 1

L(HPΨ)HRE,
S(i+ 1)← Sσ [S(i+ 1)],
R← X−HPΨS(i+ 1)EH ,
i← i+ 1,

Until i = imax,
Output: estimated delay Doppler map S# = S(i).

3.2.4 2D fast iterative shrinkage-thresholding algorithm (2D-FISTA)

The ISTA algorithm has slow convergence in general. Therefore, some acceleration techniques

have been proposed, such as an adaptive threshold value σ(i), or an adaptive step-size t(i) instead

of 1
L [69, 70]. One of the most popular algorithms is the fast iterative shrinkage-thresholding

algorithm (FISTA) [71]. Inspired by the 1D-FISTA algorithm, the 2D-FISTA algorithm is

proposed in this paper to reduce the memory requirement and complexity. According to Theorem
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1, the results of each step utilized the 2D-ISTA and 2D-FISTA algorithms are as the same as the

1D-ISTA and 1D-FISTA algorithms, respectively. Hence, similar to the relationship between the

1D-ISTA and 1D-FISTA algorithms, the 2D-ISTA and 2D-FISTA algorithms improve the worst-

case complexity result of O
(
1/i2

)
from 2D-ISTA complexity result of O (1/i). The proposed

2D-FISTA is listed in Algorithm 4.

Algorithm 4 2D fast iterative shrinkage-thresholding algorithm (2D-FISTA)

Input: measurement matrices H,P,Ψ,EH , sampled signal X, parameter σ, Maximum num-
ber of iterations imax

Initialization: S0 = 0, i = 0, R = X, L = 2λmax

(
EHE

)
× λmax

(
HPΨΨHPHHH

)
,

t(1) = 1.
Iteration:

S(i+ 1)← S(i) + 1
L(HPΨ)HRE

S(i+ 1)← Sσ [S(i+ 1)]

t(i+ 1) =
1+
√

1+4t2(i)

2 ,

µ = t(i)−1
t(i+1) ,

S(i+ 1)← S(i+ 1) + µ (S(i+ 1)− S(i)),
R← X−HPΨS(i+ 1)EH ,
i← i+ 1,

Until i = imax,
Output: estimated delay Doppler map S# = S(i).

3.3 Simulation results

The performances of the proposed algorithms are compared with those of the 1D-IHT [40], 1D-

ZAP [41], 1D-ISTA [68], and 1D-FISTA [71] algorithms. Mean square error (MSE) is defined

as:

MSE =
1

M ×N

M∑
m=1

N∑
n=1

√
(s̃mn − smn)

2 (3.20)

where s̃mn is the estimation of smn. A smaller MSE means a better estimation performance.

The bandwidth of transmitted signal B is set at 1.5kHz. The pulse width Tp is set as 1ms. The

TPRI is set as 2ms. The Nyquist sampling rate should be set larger than 2.25 × B to void the

aliasing. N = 16 pulses are transmitted to estimate the Doppler shift frequency. The delay

resolution of a grid is 1/B, and the Doppler resolution of a grid is 2π/N [72]. Thus, the number

of the delay grid is M̄ = ⌊(TPRI − Tp)∗2.25B⌋ = 33, while the number of the Doppler shift grids

is N = 16. Operator ⌊·⌋ denotes the largest integer. It is shown in Fig.3.1 (b) that the received

signal should be sampled 528 times at Nyquist sampling rate. In the following experiments, the

received signal is sampled by the RD at half of the Nyquist sampling rate. Fig.3.1 (c) shows

that the received signal is only sampled 256 times. Thus, the matrix HPΨ ∈ RM×N , where
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M = ⌊0.5 × M̄⌋ = 19 and E ∈ RN×N . According to 1D-CS algorithms, the requirement of

the memory should be at least (M ×N) × N2 = 160512, while in the 2D-CS algorithms, it

reduces to (M ′ ×N) + P 2 = 883. In the first experiment, there are K = 5 existing targets in

the search field with the white Gaussian noise whose signal-to-noise ratio (SNR) is set as 10dB.

The original delay-Doppler map is shown in Fig. 3.1 (a).

Figs.3.2–3.5 show that the estimated delay-Doppler map by the 1D-ZAP (λ = 0.01), 2D-ZAP

(λ = 0.01), 1D-IHT (σ = 0.03), 2D-IHT (σ = 0.03), 1D-ISTA (λ = 0.01), 2D-ISTA (λ = 0.01),

1D-FISTA (λ = 0.01) and 2D-FISTA (λ = 0.01) algorithms, respectively. One can find that

2D-CS algorithms can estimate the delay-Doppler map as the same as 1D-CS algorithms.

Table.6.2 shows the calculating time of each algorithm. The CPU time is used as an index

of complexity. The simulations are run in MATLAB R2017b with Intel Xeon E3-1270 v5,

3.60GHz processor and 16GB of memory under Microsoft Windows 10 Professional (64bit). The

parameters of the proposed 2D-CS algorithms are set as the same as the 1D-CS algorithms. The

table shows that the proposed 2D-CS algorithms have a faster calculation time than the 1D-CS

algorithms, because our proposed algorithms have a low complexity.

Figure 3.1: (a) The original delay-Doppler map; (b) The sampled data at Nyquist sampling
rate; (c) The data sampled by the RD.

Table 3.1: The calculating time of each algorithm

ZAP IHT ISTA FISTA

1D 1.2397 0.8883 5.1217 1.7720
2D 0.2103 0.1386 0.2091 0.1728

Fig.3.6 shows the MSE performances of the proposed 2D-ZAP algorithms against the pa-

rameter λ. The MSE performances of the 1D-ZAP algorithm are plotted as a reference. The

parameter α is set as 1. It can be found that the 2D-ZAP algorithm has the same MSE per-

formance as the 1D-ZAP algorithm with the same λ. In other words, utilizing the 2D-ZAP
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Figure 3.2: (a) The estimated delay-Doppler map by 1D-ZAP algorithm; (b) The estimated
delay-Doppler map by 2D-ZAP algorithm.

Figure 3.3: (a) The estimated delay-Doppler map by 1D-IHT algorithm; (b) The estimated
delay-Doppler map by 2D-IHT algorithm.

algorithm does not reduce the estimation performance. Moreover, for either 1D or 2D-ZAP

algorithm, a smaller λ results in a smaller steady state MSE at a slower convergence rate, while

a larger λ results in a larger steady state MSE at a faster convergence rate.

Fig.3.7 shows the MSE performances of the proposed 2D-IHT algorithms against the pa-

rameter σ. The MSE performances of the 1D-IHT algorithm are plotted as a reference. It can

be found that the 2D-IHT algorithm has the same MSE performance as the 1D-IHT algorithm

with the same σ. In other words, utilizing the 2D-IHT algorithm does not reduce the estimation

performance. Moreover, for either 1D or 2D-IHT algorithm, the MSE performance depends on

the thresholding value σ. In this case, the least MSE can be achieved when σ = 0.03. Therefore,

finding a suitable σ is the key problem in the 2D-IHT algorithm. It still needs to be studied

deeply.

Fig.3.8 shows the MSE performances of the proposed 2D-ISTA algorithms against the pa-

rameter λ. The MSE performances of the 1D-ISTA algorithms with different λ are plotted as a

reference. It can be found that the 2D-ISTA algorithm has the same MSE performance as the
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Figure 3.4: (a) The estimated delay-Doppler map by 1D-ISTA; (b) The estimated delay-Doppler
map by 2D-ISTA.

Figure 3.5: (a) The estimated delay-Doppler map by 1D-FISTA; (b) The estimated delay-
Doppler map by 2D-FISTA.

1D-ISTA algorithm with the same λ. In other words, utilizing the 2D-ISTA algorithm does not

reduce the estimation performance. Moreover, for either 1D or 2D-ISTA algorithm, a smaller

λ results in a smaller steady state MSE and a slower convergence rate, while a larger λ results

in a larger steady state MSE and a faster convergence rate. It is similar to 1D and 2D-ZAP

algorithms.

Fig.3.9 shows the MSE performances of the proposed 2D-FISTA algorithm against the pa-

rameter λ. The MSE performances of the 1D-FISTA algorithms with different λ are plotted as a

reference. It can be found that the 2D-FISTA algorithm has the same MSE performance as the

1D-FISTA algorithm with the same λ. In other words, utilizing the 2D-FISTA algorithm does

not reduce the estimation performance. Since the 2D-FISTA algorithm is an improved 2D-ISTA

algorithm, the two kinds algorithms have the similar feature that a smaller λ results in a smaller

steady state MSE and a slower convergence rate, while a larger λ results in a larger steady

state MSE and a faster convergence rate. Moreover, compared with the 2D-ISTA algorithm, the

number of iterations is much smaller when the 2D-FISTA algorithm gets the convergence.
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Figure 3.6: MSE curves of 1D-ZAP and 2D-ZAP algorithms with respect to λ
.

Figure 3.7: MSE curves of 1D-IHT and 2D-IHT algorithms with respect to σ.
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Figure 3.8: The MSE curves of 1D-ISTA and 2D-ISTA algorithms with respect to λ.

Figure 3.9: The MSE curves of 1D-FISTA and 2D-FISTA algorithms with respect to λ.
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In the third experiment, the robustness to the Gaussian noise is considered. There are 5

existing targets within the search field. SNR is chosen from 0 to 10dB. For each SNR, all these

algorithms are repeated 1000 times to calculate the MSEs. Other parameters are as the same

as the first experiment. Fig. 3.10 shows that the MSEs of all algorithms decrease with the SNR

increasing. Among these algorithms, the 2D-ZAP algorithm has the smallest MSE, and the 2D-

ISTA algorithm has a smaller MSE than the 2D-FISTA algorithm, in each SNR environment.

When SNR< 3dB, the 2D-FISTA algorithm has a smaller MSE than the 2D-IHT algorithm,

while the 2D-FISTA algorithm has a larger MSE than the 2D-IHT algorithm when SNR> 3dB.

Figure 3.10: The MSE curves of 2D-CS algorithms against SNR.

In the fourth experiment, the robustness to the target number is considered. There are 1-10

existing targets within the search field. SNR is chosen as 10dB. For each target number, all

these algorithms are repeated 1000 times to calculate the MSEs. Other parameters are set as

the same as the first experiment. Fig.3.11 shows that the MSEs of these algorithms increase as

the number of targets increases. Among all algorithms, the 2D-ZAP algorithm has the smallest

MSE. The 2D-ISTA and 2D-IHT algorithms have smaller MSEs than the 2D-FISTA algorithm,

in each SNR environment. When target number K < 3, the 2D-IHT algorithm has smaller MSE

than the 2D-ISTA algorithm, while the 2D-IHT algorithm has a larger MSE than the 2D-ISTA

algorithm when target number K > 3.

In the fifth experiment, the robustness to the compression ratio (CR) is considered. The CR

is set from 0.2 to 1. CR = 1 means that the received signal is sampled at the Nyquist sampling

rate. For each compression ratio, all these algorithms are repeated 1000 times to calculate the
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Figure 3.11: The MSE curves of 2D-CS algorithms against the number of targets.

MSEs. Other parameters are as the same as the first experiment. Fig.3.12 shows that the MSEs

of these algorithms reduce as the compression ratio increases. When compression ratio is larger

than 0.4, the 2D-ZAP algorithm has a similar MSE to the original sampling rate.

Figure 3.12: The MSE curves of 2D-CS algorithms against compressive radio.

We have proposed a 2D data model for the pulse Doppler radar system with the RD method.

In this method, the data is under-sampled by a low rate ADC. Then the 2D-CS (i.e., 2D-ZAP,

2D-IHT, 2D-ISTA, and 2D-FISTA) algorithms have been proposed for detecting the sparse tar-
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gets from the under-sampled data. Since the 2D-CS algorithms solve the 2D data model without

vectorizing, the memory requirement and complexity are significantly reduced. Numerical sim-

ulations have been provided to validate the performances of our proposed algorithms.
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Chapter 4

Robust 2D-CS-based algorithms for

delay Doppler joint estimation

4.1 Non-Gaussian impulsive noise

Recall the sampled signal model which is given by: X = HPU+W = HPΨSEH+W, where

wln ∈W denotes the noise. As our previous discussion, W is assumed to satisfy the Gaussian

distribution to simplify the model. However, the impulsive noise, such as environmental effects

of atmospherics (lighting) and meteor train echoes [53], will occur in W in the practical radar

system. The radar performance is easy to be degraded by the impulsive noise interference.

These impulsive noise makes the statistical characteristics of noise significantly deviate from

the Gaussian distribution. Its probability density function (PDF) decays more slowly than a

Gaussian distribution, causing heavy tail. In order to evaluate the characteristics of the impulsive

noise, the symmetric α-stable noise model [73–75] is used to describe the non-Gaussian impulsive

noise. The characteristic function of α-stable distribution is defined as

r (z;α, β, c, u) = ejuz−|cz|α×[1+jβ·sgn(z)φ(z,α)] (4.1)

where

• α ∈ (0, 2] denotes the characteristic exponent. When α = 2, the distribution becomes a

Gaussian distribution. When α is closer to 0, the number of the impulse in noise is larger,

and the amplitude of the impulse is larger;

• β ∈ [−1, 1] denotes the skewness parameter which controls the symmetry scenarios;
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• c ∈ [0,∞) is a scale factor which plays a similar role as the variance of Gaussian distribu-

tion;

• u ∈ (−∞,∞) is the location parameter.

When β = 0, the distribution is symmetric about u, and

φ (z, α) =

{
tan

(
πα
2

)
, α ̸= 1;

−2 log|z|
π , α = 1.

(4.2)

In this thesis, only the symmetric α-stable noise model is considered, because it is the

most common in a practical radar system [73], The PDF of the symmetric α-stable model is

shown in Fig.4.1. The characteristic function of the symmetric α-stable distribution is simplified

as r (z;α, c) = e−|cz|α . For convenience, the variance of the symmetric α-stable distribution is

defined as σn = c1/α which plays the role as the noise variance. The large variance results in that

the approaches of the above 2D-CS algorithms are far from the desired original delay-Doppler

map S. Thus, the robust 2D-CS-based algorithms are expected.

Figure 4.1: Symmetric α-stable distributions.

The reason for low accuracy is that ℓF -minimization for errors is not robust against the

impulse noise. The key in our proposed robust 2D-CS-based algorithms is that ℓF -norm is

replaced by more robust cost function, such as ℓ1-norm, ℓp-norm (0 < p < 1) and Lorentzian

norm (LL2-norm), which are presented in the following sections. These cost functions provide
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the bias and efficiency when data is contaminated by a small noise and reliable albeit not optimal

behavior when the data is contaminated by impulsive noise.

4.2 Proposed robust 2D-CS-based algorithms

4.2.1 The ℓ1-based 2D methods

Using ℓ1-norm instead of ℓF -norm in the data-fitting term in Eq. (3.1), the solving method can

be written as

S = min
∥∥X−HPΨEH

∥∥2
1
+ λ∥S∥0. (4.3)

Then the data fitting tern can be solved as:

S (i+ 1) = S (i) +∇F (S (i))

= S (i) + (HPΨ)HRℓ1E,
(4.4)

where Rℓ1 = sgn(R), and it provides low variance gradient estimates, with the effect of reducing

the residual error. It means that ℓ1-based 2D method does not pay attention to the amplitude of

the residual error, because in the non-Gaussian impulsive noise environment, it is very possible

that the large residual error is caused by impulsive noise. If we pay the indiscriminate attention

to the amplitude of the residual error, the approaches of the above 2D-CS algorithms are far

from the desired original delay-Doppler map.

The ℓ1-based 2D-robust-ZAP (2D-RZAP(L1)) algorithm can be extended from 2D-ZAP al-

gorithm as follows:

S (i+ 1) = S (i) + µ (HPΨ)H Rℓ1E+ λg (S (i)) , (4.5)

where µ denotes the step-size which reduces the update rate of each element. With the same idea,

the ℓ1-based 2D-robust-IHT (2D-RIHT(L1)) algorithm can be extended from 2D-IHT algorithm

as follows:

S (i+ 1) = H
[
S (i) + µ(HPΨ)HRℓ1E

]
(4.6)

4.2.2 The ℓp-based 2D methods

The ℓ1-based 2D method is a simple method to limit the influences of the too large residual

error. However, it still cannot distinguish that the data is contaminated by a small noise or a

large impulsive noise. Thus, this method does not utilize the data which is contaminated by a

small noise effectively. The ℓp-based 2D method is proposed to reduce the influence of a large
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residual error while the small residual error is utilized effectively. It is given by:

S = min
∥∥X−HPΨSEH

∥∥p
p
+ λ∥S∥0, (4.7)

where Rℓp is the reweighted residual error matrix. The ith element can be written as

Rℓp (i) =
∥R∥1−p

p sgn (R (i))

ε+ |R (i)|1−p ,

where 0 < p < 1 and ε is a small constant bounding the term to avoid denominator becoming 0.

It is a robust method since a large residual error does not influence the approach while a small

residual error is utilized effectively.

The ℓp-based 2D-robust-ZAP (2D-RZAP (Lp)) algorithm is extended from 2D-ZAP algo-

rithm as follows:

S (i+ 1) = S (i) + µ (HPΨ)H RℓpE+ λg (S (i)) , (4.8)

and ℓp-based 2D-robust-IHT (2D-RIHT) algorithm is extended from 2D-IHT algorithm as follows

S (i+ 1) = H
[
S (i) + µ(HPΨ)HRℓpE

]
. (4.9)

The ℓp-based 2D methods is an effective method for non-Gaussian impulsive noise environ-

ment if the parameter p is selected properly. How to choose p depends on user experience.

Hence, we will propose another norm for choosing the parameter automatically.

4.2.3 The LL2-based 2D methods

The Lorentzian norm (LL2-norm) is a robust norm that does not heavily penalized large devi-

ations with the robustness depending on the scale parameter γ, which is chosen by the received

signal automatically. Compared with the ℓp-based 2D methods, the LL2-based 2D methods are

able to adaptively select appropriate parameters to meet the need for high accuracy and fast

convergence speed. The Lorentzian norm of a matrix X ∈ CN×M is defined as:

∥X∥LL2,γ
=

N∑
n=1

M∑
m=1

log

(
1 +

x2n,m
γ2

)
, (4.10)

where setting γ to half the data range of X as
(
X(1) −X(0)

)/
2, X(i) is the i-quantile of vec(X).

However, it often makes the Lorentzian norm to approximate ℓ2-norm in simulation. According

to [76], γ should be set as
(
X(0.875) −X(0.125)

)/
2 in general. It means that the measurement

matrix with 25% of data corrupted and 75% well behaved by this value of γ.
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Therefore, LL2-based 2D methods are proposed to reduce the influence of a large residual

error while the large residual error is utilized effectively. It is given as:

S = min
∥∥X−HPΨSEH

∥∥
LL2,γ

+ λ∥S∥0, (4.11)

Then the data fitting term can be solved as:

S (i+ 1) = S (i) +∇F (S (i))

= S (i) + (HPΨ)HRLL2,γE,
(4.12)

where

RLL2,γ (i) =
γ2R (i)

γ2 +R2 (i)
.

The LL2-based 2D-robust-ZAP (2D-RZAP (LL2)) algorithm is extended from 2D-ZAP al-

gorithm as follows:

S (i+ 1) = S (i) + µ (HPΨ)H RLL2,γE+ λg (S (i)) , (4.13)

and LL2-based 2D-robust-IHT (2D-RIHT (LL2)) algorithm is extended from 2D-IHT algorithm

as follows:

S (i+ 1) = H
[
S (i) + µ(HPΨ)HRLL2,γE

]
. (4.14)

In Fig. 4.2 shows the cost function of ℓ1-norm (blue), ℓp-norm with p = 0.5 (yellow), and

Lorentzian norm with γ = 0.1 (purple) and γ = 1 (green). The cost function of ℓ2-norm (red)

is also plotted as reference. Compared with ℓ2 -norm, the functions of ℓ1-norm, ℓp-norm and

Lorentzian norm do not over penalize large deviations, which results in more robust for non-

Gaussian impulsive noise. Moreover, ℓp-norm and Lorentzian norm are more robust to outliers

than ℓ1-norm because when R(i) → ∞, the formers do not increase their value as fast as the

latter.

4.3 Simulations results

In this simulations, the robustness of the ZAP algorithms to the non-Gaussian noise is considered.

The non-Gaussian impulsive noise satisfies the symmetric α-stable distribution, where α ∈

[0.5, 1, 1.5, 2]. When α is close to 2, the noise is similar to a Gaussian noise, while when α is

close to 0, the noise is similar to a non-Gaussian impulsive noise. The parameters are list in

Table. 4.1

In Fig. 4.3, one can find that the MSE of the 2D-ZAP algorithm becomes large in the
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Figure 4.2: The cost function of ℓ1-norm (blue), ℓp-norm with p=0.5 (yellow), and the Lorentzian
norm with γ=0.1 (purple) and γ=1 (green). ℓ2-norm (red) is plotted as reference..

2D-ZAP 2D-RZAP(L1) 2D-RZAP(Lp), 2D-RZAP(LL2)

µ / 0.01 0.0001 0.5
λ 0.01 0.01 0.001 0.0005

Table 4.1: The parameters in 2D-ZAP and 2D-RZAP algorithms

non-Gaussian impulsive noise environment. When α = 0.5 , the 2D-RZAP(L1) algorithm has

the smallest MSE. When 1 ≤ α ≤ 1.5, the 2D-RZAP(Lp) and 2D-RZAP(LL2) algorithms also

have the small MSE. And the MSEs of these two algorithms is smaller than the 2D-RZAP(L1)

algorithm. Only when α = 2 , namely in the Gaussian noise environment, the 2D-ZAP algorithm

has the smallest MSE. The main reason is that the cost function of the 2D-ZAP algorithm is

most sensitive to the noise, while the cost function of the 2D-RZAP(L1) algorithm is most

non-sensitive to noise.

In the simulation, the robustness of the IHT algorithms to the non-Gaussian noise is consid-

ered. The parameters are list in Table. 4.2.

2D-IHT 2D-RIHT(L1) 2D-RIHT(Lp), 2D-RIHT(LL2)

µ / 0.02 0.0002 0.1
σ 0.004 0.1 0.1 0.1

Table 4.2: The parameters in 2D-IHT and 2D-RIHT algorithms

In Fig. 4.4, as the same as the 2D-ZAP algorithm, the MSE of the 2D-IHT algorithm becomes

large in the non-Gaussian impulsive noise environment. When α = 0.5 , the 2D-RIHT(Lp) and

2D-RIHT(LL2) algorithms have the small MSE. When 1 ≤ α ≤ 1.5, the 2D-RIHT(L1), 2D-
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RIHT(Lp) and 2D-RIHT(LL2) algorithms also have the small MSEs. Only when α = 2 ,

namely in the Gaussian noise environment, the 2D-IHT algorithm has the smallest MSE. The

main reason is that the cost function of the 2D-IHT algorithm is most sensitive to the impulsive

noise, while the cost functions of the 2D-RIHT(L1, Lp and LL2) algorithms are non-sensitive to

impulsive noise.

The robust 2D-CS algorithms (2D-RZAP(L1, Lp, LL2) and 2D-RIHT(L1, Lp, LL2)) have

been given for non-Gaussian impulsive noise environment. Numerical simulations have been

provided to validate the performances of our proposed algorithms.

Figure 4.3: MSE curves of 2D-ZAP and 2D-RZAP algorithms with respect to α.

Figure 4.4: MSE curves of 2D-IHT and 2D-RIHT algorithms with respect to α.
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Chapter 5

Direction-of-arrival estimation model

for MIMO radar system

5.1 Mathematical model

In MIMO radar systems, multiple antennas also known as an array are used for target detection.

There are many types of arrays for different needs, such as (the position of antennas in each

array is shown in Fig. 5.1):

• Uniform Linear Array (ULA) [77]: all the M antennas lie on a line and the distance

between the adjacent antennas is identical d for any two adjacent antennas. It is a simple

case that can be used to estimate the azimuth angle of the target.

• Uniform Plane Array (UPA) [78]: Antennas are placed on a rectangular grid where the

nodes are spaced d1 along x-axis and d2 along y-axis (if d1 = d2 = d, a square grid is got).

It can be used to estimate both the azimuth and elevation angles of the target.

• Uniform Circular Array (UCA) [79]: The antennas are placed on a plane in a polar grid.

For a fixed radial distance we have a circle on which the antennas are placed. It can also

be used to estimate both the azimuth and elevation angles of the target.

• Sparse Array [80–82]: The distance between the adjacent antennas is non-uniform. Com-

pared with the uniform array, the sparse array can achieve the same resolution, while the

number of antennas, the complexity, size and weight of the system are reduced.

Other arrays can be seen as the expansion of the ULA. Hence, in this thesis, the ULA is

introduced and used to validate the performances of our proposed algorithms due to its simplicity

and typicality.
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Figure 5.1: Schematic diagram of antenna positions of various arrays

Considering the two antennas in Fig. 5.2 and a far field point, the far field is the region

beyond radial distance R which satisfies as

R > D,

R > λ,

R > 2D2

λ ,

where and λ is the wavelength of signals. In this region, the radial component of the electric and

magnetic fields are negligible and only the angles components matter. In general, especially in

wireless communications, antennas and wavelengths are small enough that we can safely assume

the far-field condition holds.

There is a relationship between the direction of targets and the phase shift of the received

signals We assume that the target source signal comes from a far field point whose distances

from Antenna 0 and Antenna 1 with R0 and R1 respectively. The direction of the target is θ.

The time takes for the signal to arrival the Antenna 0 is t0 = R0
c , and to arrival the Antenna 1
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Figure 5.2: An array of two antennas

is t1 =
R1
c , where c is the speed of light. The time difference is

∆t = t0 − t1

=
R0 −R1

c

=
d cos θ

c
.

(5.1)

For the signal with the frequency f , this time difference is equivalent to a phase shift:

ej2πf∆t = ej2πfd cos θ/c

= ej2πd cos θ/λ

= ejpd cos θ,

(5.2)

where p = 2π/λ. The signal at the Antenna 1 (s1) and the signal at the Antenna 0 (s0) are

related by

s1 = s0e
jpd cos θ. (5.3)

The two-antenna steering vector can be written as

s (θ) = s0

[
1 ejpd cos θ

]T
. (5.4)

The signal s0 is a constant across the steering vector. This constant can be safely ignored,

because the information on the signal direction is only in the vector a (θ) =
[
1 ejpd cos θ

]T
.

Generalizing this to a ULA with M antennas, the steering vector associated with an angle θ can

be written as

a (θ) =
[
1 ejpd cos θ · · · ejpd(M−1) cos θ

]T
(5.5)
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Figure 5.3: A reference scenario: source signals, denoted as sk(t), impinge on the array at angles
θk, with the received signals denoted as xm(t).

In general, there are multiple targets at the same time, which is shown in Fig. 5.3. With the

definition of the steering vector, the received signal model with multiple targets can be written

as:

x(t) =
K∑
k=1

sk(t)a (θk) +w(t), (5.6)

whereK is the number of targets, t is the sample time (snapshot), x (t) =
[
x1 (t) · · · xM (t)

]T
is the received signal, w (t) =

[
w1 (t) · · · wM (t)

]T
is the Gaussian noise, and sk(t) is the

kth source signal at time t. The DOA estimation problem for massive MIMO systems can be

stated as follows: Given x(t) and the mapping θk → a (θk), find the unknown directions θk and

the number K.

5.2 Single measurement vector and multiple measurement vec-

tor

However, in real MIMO radar systems, a (θk) is unknown because it depends on θk which needs

to be solved. To overcome this difficulty, an overcomplete representation of x(t) is developed

in [56]. In this framework, the whole direction area of interest is divided into N distinct potential

DOAs. Define the potential DOA vector as ϑ =
[
θ1 · · · θN

]
. In general, the number of

potential DOAs N is much larger than the number of the source signals K, or even the number

of sensors M . The overcomplete dictionary consists of the steering vectors for each element in
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ϑ as

A =
[
a(θ)1 · · · a (θN )

]
. (5.7)

Since ϑ is a given vector, the new manifold matrix A is known. Thus, the received signal can

be formulated as a sparse representation problem:

x (t) =
N∑

n=1

a (θn) sn (t) +w (t)

= As (t) +w (t) ,

(5.8)

where s(t) =
[
s1 (t) · · · sN (t)

]T
is represented as the source signals from

[
θ1 · · · θN

]
at time t. Ideally, the nth component sn(t) of s(t) is nonzero if and only if θn = θk for some k,

and in that case sn(t) = sk(t). It may not hold exactly that θk is equal to an element of ϑ for

any k in practice. But it can be found that when ϑ is dense enough, θn will be approximately

equal to an element of ϑ, and the remaining modeling error is absorbed in the residual term

w (t) [10]. In general, K is much smaller than N , hence most elements in s(t) are zeros, and

such a vector s(t) is a sparse vector.

If only a single snapshot can be used for DOA estimation, e.g., t = T = 1 where T is the

total number of snapshots, s(t), x(t) and w(t) can be abbreviated as s, x and w, respectively.

Thus, solving the vector s from x = As+w can be formulated as an single measurement vector

(SMV) problem, and it can be solved by CS method (refer to Eq. 2.30) directly.

In real applications, there are multiple snapshots for DOA estimation generally. The SMV

problem cannot improve the accuracy for DOA estimation with multiple snapshot. Assuming

aggregation over T snapshots with 1 ≤ t ≤ T , where T is smaller than the requirement of the

traditional DOA estimation algorithm, the observation model can be written as the multiple

measurement vector (MMV) problem:

X = AS+W, (5.9)

where
X =

[
x (1) · · · x (T )

]
,

S =
[
s (1) · · · s (T )

]
,

W =
[
w (1) · · · w (T )

]
.

In the MMV problem, if θn = θk for some k, the elements in nth row of the S are nonzero,

otherwise they are zeros. If matrix S can be solved from X, the positions of the nonzero

elements in S represent the true directions. When the true directions are time-invariant over
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the period of observation, the nonzero elements share K same rows corresponding to the true

directions. Therefore, only K rows in S are nonzero. Such an S is called jointly K-sparse

matrix [83, 84]. As a result, the task of DOA estimation with the MMV model can be changed

to determine the positions of nonzero elements in S, and the multiple snapshots in the MMV

model can improve the accuracy compared with the SMV model. The jointly sparse matrix S

can be exactly estimated by [57]:

min ∥S∥2,1, s.t.∥X−AS∥F ≤ ε, (5.10)

where ε is a small constant, ∥·∥F denotes the Frobenius norm, and ∥·∥2,1 =
∑
i

√∑
j
[·]2i,j denotes

the ℓ2,1-norm [85]. The ℓ2,1-norm ensures that the number of the nonzero rows in S is the

least. Once S is computed by Eq. 5.10, the peaks of ℓ2-norm of each row in S provide the true

directions.

In practice, as the same as the case of the SMV model, equality θn = θk may not hold exactly

for any k. Nevertheless, making the grid dense enough, one can ensure θn ≈ θk closely, and the

remaining modeling error can be absorbed in W. However, we cannot make the grid very dense

since it will increase the computation time. As a natural solution, the multi-resolution grid

refinement method has been proposed in [56]. This method divides the range of interest into a

coarse sampling grid first, and searches the potential DOAs where sources may exist by a sparse

recovery method. Then the candidate grids obtained in the first stage are divided into a denser

sampling grid and the same sparse recovery method is used again to search the sources.

In contrast, a coarse sampling grid results in a short computation time but low resolution

estimation performance. In the worst case, the directions nearby the true sources cannot be

obtained. An example for the results of different grid refinements solved by the sparse recovery

algorithm is shown in Fig. 5.4, where the true signals come from [44◦, 79◦, 88◦]. Fig. 5.4 (a)

shows the ideal situation, where the interval between two sampling grids ∆θ is set to 1◦. We

see that all true directions can be found. In Fig. 5.4(b), when ∆θ = 5◦, the some directions

closest to the true directions can be estimated. Since the true directions are not on-grid, they

cannot be achieved directly, but we see that the estimated directions are very close to these

true directions. In Fig. 5.4(c), when ∆θ = 10◦, the estimated directions are quite different from

the true directions. That is, the sparse recovery method fails to find the candidates for true

sources. Hence, if an effective method to find the true directions with a coarse sampling grid,

the multi-resolution method will become more useful.

50



Figure 5.4: Results estimated by the CS-based algorithm for different ∆θ. (a) ∆θ = 1◦; (b)
∆θ = 5◦ ; (c) ∆θ = 10◦.
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Chapter 6

Dimension-reduced DOA estimation

based on ℓ2,1-norm penalty

In this chapter, a dimension-reduced DOA estimation based on CS is proposed. First, a low-

resolution method [86] is used to quickly identify the candidate or potential areas where true

sources may exist. Then, ℓ2,1-norm minimization (a high-resolution method) is used to locate

the sources.

6.1 Pre-estimation

The mismatch problem limits the performance of the CS-based DOA estimation with a coarse

sampling grid as shown in Fig. 5.4. Therefore, under the CS framework, it is difficult to find the

possible areas where targets exist. In order to avoid the fail to find the candidate or potential

regions and, at the same time, to reduce the computational cost more effectively, a low-resolution

method called the conventional beam former (CBF) is used to identify the potential DOA closest

to the corresponding true sources. It can be used to quickly identify the candidate or potential

areas even for the sampling grid coarser than the one in Fig .5.4.

The CBF identifies the candidate or potential areas by checking the correlation between an

estimation and a source. Even when the sampling grid is coarse and the closest potential DOA

is away from the source, the correlation between the estimation on the source and the closest

grid to the source is still high. While the correlations between the source and the estimations

on the other potential DOAs are near to zero. Therefore, the CBF can identify the candidate

or potential areas where true sources may exist for rather coarse sampling grid. Thus, the areas

that obviously contain no sources (where the correlation is near to zero) can be removed, while

those that possibly include true sources (where the correlation is relatively high) can be kept

for further detailed searching.
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Assume that there is an observed signal X = a(θ)S whose source comes from θ and a candi-

date signal X̄ = a(ϕj)S̄ whose source comes from a candidate direction (ϕj) . For convenience,

we set S̄ as 1 and θ = ϕi. The output power V (ϕj) of the CBF whose inputs are the observed

signal X and the candidate signal X̄ is used to locate the sources. It is defined as:

W (ϕj) = X̄HXXHX̄

= aH (ϕj)XXHa (ϕj)

= aH (ϕj)a (ϕi)Rssa
H (ϕi)a (ϕj) ,

(6.1)

where Rss = SSH . When X is given, the output power W (ϕj) is determined by the correlation

between a(ϕi) and a(ϕj). Only when ϕi = ϕj , the absolute value of the correlation is the largest

(see Fig. 6.1).

Assume that ϕi and ϕj is the i-th and j-th elements of {ϕ1, ..., ϕP } respectively, namely,

a(ϕi) and a(ϕj) are the i-column and j-column of Φ respectively. The correlation between a(ϕi)

and a(ϕj), i.e., the i-th and the j-th columns of Φ is defined as [87]

χ (ϕi, ϕj) =
aH(ϕi)a(ϕj)

M

=
1

M

M−1∑
m=0

exp {j2πdm [cos (ϕi)− cos (ϕj)]}.
(6.2)

Due to that the source may come from any direction of interest, the measure of correlation

between any two columns of Φ is necessary. An intuitive measure is its mutual coherence

defined as [88,89]

ΦHΦ

M
=


1 · · · χ (ϕ1, ϕP )

χ (ϕ2, ϕ1) · · · χ (ϕ2, ϕP )
...

...
...

χ (ϕP , ϕ1) · · · 1

 , (6.3)

Then, the absolute Gram matrix is defined as

G
∆
=

∣∣ΦHΦ
∣∣

M
. (6.4)

The element in the i-th row and the j-th column of G can be written as Gi,j = |χ (ϕi, ϕj)|,

which represents the absolute value of the correlation between a(ϕi) and a(ϕj). A large Gi,j

denotes a high correlation, while a small Gi,j denotes a low correlation.

Fig. 6.1 (a) and (c) show the matrix G with M = 10 and 20 in θ space, respectively. Fig.

6.1 (b) and (d) show the corresponding beampattern with M = 10 and 20 when ϕi = 90◦,

respectively. The red points denote the positions of the null points where Gi,j = 0. In Fig. 6.1
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Figure 6.1: Gram matrix for a ULA with M = 10 sensors (a) and M = 20 sensors (c), with
d/ℓ = 1/2. The corresponding beam patterns when θk = 90◦ are shown in (b) (M = 10) and
(d) (M = 20). The red points show the positions of the null points.
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(b) and (d), it can be found that the position of the closest null point to ϕi is determined by

the number of sensors M . A smaller M can yield less null points and a farther null point from

ϕi, thus resulting in a wide beam width. When ϕj is in the area between two points which are

the most closest to ϕi, the correlation also can be used to determine whether the target exists.

According to Appendix A, the closest null point to ϕi is ϕj = arccos
[
cos (ϕi)± 2

M

]
. In other

words, the correlation between a(ϕi) and a(ϕj) is still high, although ϕj is away from ϕi. Hence,

it is feasible to determine whether there is a source in one divided search area based on one ϕj ,

which belongs to this search area. In addition, for a small-scale ULA, all the observations X can

be used directly due to its low resolution. However, for a large-scale ULA, the high resolution is

not conducive to the search area division, as the correlation decreases rapidly when ϕj is slightly

away from ϕi. Therefore, only the observations X measured by the first M̄ sensors are required.

In this way, the resolution can be reduced artificially for area search. M̄ can be determined by

the number of search areas according to the absolute Gram matrix.

In the first stage, the search range is divided into P̄ (P̄ < P ) sampling grids ϕp̄ coarsely,

where p̄ = 1, 2, ..., P̄ . Thus, Φ
∆
= [a(ϕ1), ...,a(ϕP̄ )]. The interval between two adjacent search

areas is ∆ϕ = ϕp̄+1 − ϕp̄. Then, the largest correlation can be found as follows:

ϕ = argmax
ϕp̄

J, (6.5)

where J = [J (ϕ1) , ..., J (ϕp̄) , ..., J (ϕP̄ )] is a correlation filter used to output the correlation

between a (ϕp̄) and the observations X. It can be defined as follows:

J (ϕp̄) = aH (ϕp̄)Rxxa (ϕp̄) , (6.6)

where RXX = XXH is the covariance matrix of the observations X. The index set of the K̃

largest J (ϕp̄) can be found as follows:

ΦK̃ = LK̃ (J) . (6.7)

The true signal directions are located in the index set with a high probability. In other words,

ΦK̃ can be constructed as a new manifold matrix for the grid search.

6.2 Grid search with ℓ2,1-norm penalty

The areas whose correlations are near to zero can be ignored in the first state. Only the candidate

areas are applied in the second stage to achieve the true direction with a high resolution. To
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achieve a high resolution result, the ΦK̃ found in the first stage is divided into denser sampling

grids and construct a new matrix Φs
∆
= [a(ϕs1), ...,a(ϕsPs)] (M < Ps ≪ P ). Thus, the problem

can be modeled as

X = ΦsS+W. (6.8)

As with Eq. (5.9), we can estimate the signal directions if we find the nonzero values in S. This

problem can be converted into the following ℓ2,1-norm minimization problem:

min ∥S∥2,1, s.t. ∥X−ΦsS∥F ≤ ε, (6.9)

where ε is a small constant, which can be set as ε ≥ ∥W∥F [87, 90]. We can directly use a

Matlab tool called CVX to solve the optimization problem in Eq. (6.9) [91].

Using the true signal s, the constraint in Eq. (6.9) can be reconstructed as follows:

∥X−ΦsS∥F = ∥(AS+W)−ΦsS∥F

= ∥(AS−ΦsS) +W∥F ≤ ε
(6.10)

Using the triangle inequality (|∥a∥F − ∥b∥F | ≤ ∥a± b∥F ≤ ∥a∥F + ∥b∥F ) yields

|∥AS−ΦsS∥F − ∥W∥|F ≤ ∥(AS−ΦsS) +W∥F ≤ ε, (6.11)

Considering the sign yields

−ε ≤ ∥AS−ΦsS∥F − ∥W∥F ≤ ε. (6.12)

Since ε ≥ ∥W∥F , the above inequality can be simplified as follows:

0 ≤ ∥AS−ΦsS∥F ≤ 2ε. (6.13)

To achieve the max residual angle, we assume that there is only one nonzero value element in s

and in S. This yields

0 ≤ ∥AS−ΦsS∥F = ∥a(θ)s(θ)−a(ϕ)̃s(ϕ)∥F ≤ 2ε, (6.14)

where s(θ) is the true signal from θ and s̃(ϕ) is the estimated signal from ϕ. According to Eq.
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(6.9), the solution satisfies the condition requiring that f (̃s(ϕ)) be minimized, where

f (̃s (ϕ)) = ∥a(θ)s(θ)− a(ϕ)̃s(ϕ)∥2F

=tr
{
[a(θ)s(θ)− a(ϕ)̃s(ϕ)]H [a(θ)s(θ)− a(ϕ)̃s(ϕ)]

}
=tr

{
sH(θ)aH(θ)a(θ)s(θ)− 2sH(θ)aH(θ)a(ϕ)̃s(ϕ)

+s̃H(ϕ)aH(ϕ)a(ϕ)̃s(ϕ)
}

=M × tr
{
sH(θ)s(θ)

}
− 2× tr

{
sH(θ)aH(θ)a(ϕ)̃s(ϕ)

}
+M × tr

{
s̃H(ϕ)̃s(ϕ)

}
,

(6.15)

where tr [·] =
N∑
i
[·]ii denotes the trace of a matrix. For any θ and ϕ, the solution for min f (̃s (ϕ))

also satisfies
∂f (̃s (ϕ))

∂s̃ (ϕ)
= 0. (6.16)

It yields
∂f (̃s (ϕ))

∂s̃ (ϕ)
= M s̃(ϕ)− 2sH(θ)aH(θ)a(ϕ) = 0. (6.17)

The relation between θ and ϕ can be achieved as

∂f (̃s (ϕ))

∂s̃ (ϕ)
= 2M s̃(ϕ)− 2aH(ϕ)a(θ)s(θ) = 0. (6.18)

This equation can be solved as

s̃(ϕ) =
aH(ϕ)a(θ)

M
s(θ). (6.19)

Inserting s̃(ϕ) from (6.19) into (6.14) yields

∥a(θ)s(θ)− a(ϕ)̃s(ϕ)∥F
=
∥∥∥a(θ)s(θ)− a(ϕ)a

H(ϕ)a(θ)
M s(θ)

∥∥∥
F
≤ 2ε.

(6.20)

Thus, we can achieve

∥a(θ)− ρa(ϕ)∥F ≤ 2υ, (6.21)

where ρ =
[
aH(ϕ)a(θ)

]/
M = χ (ϕ, θ) denotes the correlation and υ = ε/ ∥s(θ)∥F ≥ ∥n∥F /∥s(θ)∥F

is related to the noise power required by the signal-to-noise ratio (SNR).

The proposed method is listed in Algorithm 5.

At last, the proposed method can also use the multi-resolution grid refinement method to

further divide the regions where the sources may exist into a denser sampling grids to get a

higher resolution.
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Algorithm 5 Dimension-Reduced Direction-of-Arrival Estimation Based on ℓ2,1-Norm Penalty

Input:
The manifold matrix Φ,
The sampled signal X,

The parameter ε =
∥N∥F
P ,

The number of possible search areas K̃,
Initialization:
1. Set S0 = 0,
2. Set ΦK̃ = ∅,

Pre-estimation:
3. W (ϕp) = aH (ϕp)Rxxa (ϕp),
4. ΦK̃ = LK̃(W),

Grid search:
5. Construct Φs according to ΦK̃ ,
6. S = min ∥S∥2,1 s.t. ∥X−ΦsS∥F ≤ ε,

Output: The estimated DOA S# = S.

Figure 6.2: A reference scenario of a uniform plane array: a source, denoted as sk(t), impinges
on the array at azimuth angle θxk and elevation angle θyk, with the received signals denoted as
xn,m(t).

6.3 Extension for 2D-DOA

The proposed method can be extended for 2D-DOA estimation with a uniform plane array. Fig.

6.2 shows an example of a uniform plane array with N ×M sensors. The signals come from

(θx1 , θ
y
1), (θx2 , θ

y
2), ...,

(
θxK , θyK

)
, where θxk and θyk (k = 1, ...,K) denote the azimuth angle and

elevation angle of the k-th source, respectively. Thus, the wave path difference between the first

sensor and the i-th sensor can be written as

β = 2π
(
dxi cos θ

y
k sin θ

x
k + dyi sin θ

y
k sin θ

x
k

)/
ℓ, (6.22)
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where dxi and dyi denote the coordinates of the i-th sensor. The received signal can be written

as

x(t) =


AxD1 (Ay)

AxD2 (Ay)
...

AxDN (Ay)

 s(t) +w(t), (6.23)

where

Ax
∆
=
[
ax(θ

x
1 , θ

y
1),ax(θ

x
2 , θ

y
2), ...,ax(θ

x
K , θyK)

]
,

ax(θ
x
k , θ

y
k)

∆
=
[
a1x(θ

x
k , θ

y
k), ..., a

m
x (θxk , θ

y
k), ..., a

M
x (θxk , θ

y
k)
]T

,

amx (θxk , θ
y
k)

∆
= exp

(
−j2πdxm cos θyk sin θ

x
k

)
/ℓ,

Ay
∆
=
[
ay(θ

x
1 , θ

y
1),ay(θ

x
2 , θ

y
2), ...,ay(θ

x
K , θyK)

]
,

ay(θ
x
k , θ

y
k)

∆
=
[
a1y(θ

x
k , θ

y
k), ..., a

m
y (θxk , θ

y
k), ..., a

M
y (θxk , θ

y
k)
]T

,

any (θ
x
k , θ

y
k)

∆
= exp

(
−j2πdyn sin θ

y
k sin θ

x
k

)
/ℓ.

Dn(Ay) denotes the diagonal matrix constructed by the n-th row of Ay. It can be found that

Eq. (6.23) is similar to Eq. (5.9). Our proposed method can be applied for 2D-DOA estimation.

First, the search range is divided into P̄ × Q̄ sampling grids (φx
p̄ , φ

y
q̄), as shown in Fig. 6.3,

where

a(p̄, q̄) = ay(φ
x
p̄ , φ

y
q̄)⊗ am(φx

p̄ , φ
y
q̄). (6.24)

Then, the correlation between a(p̄, q̄) and x is calculated as

J (p̄, q̄) = aH(p̄, q̄)Rxxa(p̄, q̄). (6.25)

The index set of the K̃ largest J (p̄, q̄) can be found as follows:

ΦK̃ = LK̃ (W) . (6.26)

The true signal directions are located in the index set with a high probability. Then, the new

search areas are divided into denser sampling grids to construct the measurement matrix Φs.

Finally, the nonzero values in s can be solved by Eq. (6.9).

6.4 Simulation Results

The performance of our proposed method is compared with the Capon [12], MUSIC [11] the

ℓ1-SVD [56], JLZA-DOA [10] and NSW-L1-L2 [57] algorithms. The simulations are performed
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Figure 6.3: Sampling grids in Stage 1 for 2D-DOA estimation.

utilizing MATLAB R2017b with an Intel Xeon E3-1270 v5, 3.60 GHz processor and 16 GB of

memory under Microsoft Windows 10 Professional (64 bit).

We consider a ULA with M = 10 sensors at L = 5 snapshots. The distance between the

sensors is equal to half the wavelength. In the ℓ1-SVD, JLZA-DOA and NSW-L1-L2 algorithms,

a sampling grid with a range of 0◦ to 180◦ and 1◦ intervals is used. In our proposed method,

a sampling grid with intervals of 10◦ is used for pre-estimation in the first stage. Then, denser

sampling grids with an interval of 1◦ are set around the estimated directions for the grid search.

In the first simulation, there areK = 3 uncorrelated signals originating from [40◦, 110◦, 120◦].

The true signal directions are on the sampling grid. The SNR is set to 10 dB. Fig. 6.4 (a) and

(b) show the DOA estimation results obtained by the MUSIC and Capon algorithms. Since the

number of snapshots is too small, these two algorithms fail to resolve the sources at 40◦ and

120◦. Fig. 6.4 (c) (d) and (e) show the CS-based DOA estimation results obtained by ℓ1-SVD,

JLZA-DOA and NSW-L1-L2 algorithms. Fig. 6.4 (f) shows the |W (ϕp)| in each search area

in the first stage of our proposed method. The output of the correlation filter shows that the

sources come from search area 1 (30◦ ∼ 50◦) and search area 2 (100◦ ∼ 130◦). Thus, the other

search areas can be ignored in the subsequent search. Fig. 6.4 (g) shows the final result of

our proposed method. Clearly, all the source directions can be searched by the CS-based DOA

estimation methods.

In the second simulation, there areK = 3 uncorrelated signals originating from [40.5◦, 110.8◦, 120.5◦].

The true signal directions are not on the sampling grid. The other parameters are the same
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as those used in the first simulation. The results are shown in Fig. 6.5. All the CS-based

DOA estimation methods can locate three sources closest to the true signal directions, while the

traditional methods are failed.

Table 1 shows the calculation time of the ℓ1-SVD, JLZA-DOA, NSW-L1-L2 and our proposed

method. The average times obtained after 100 Monte Carlo trials. The other parameters are

the same as those used in the second simulation. It can be found that our proposed method is

the fastest, because it ignores some search areas and focus on the most possible search areas.

Table 6.1: Calculation time of each CS-based algorithm

Parameter Time (sec)

M L ℓ1-SVD JLZA-DOA NSW-L1-L2 Proposed method

10 5 3.4375 3.7344 5.8594 1.5000

In the third simulation, the relation between the frequency of detection and the number of

snapshots is considered. The number of sensors is set to M = 10. The SNR is fixed at 10 dB.

The frequency of detection is defined as the ratio between the number of the successful directions

and the number of the total directions. The number of snapshots is set to L ∈ {1, 2, ..., 10}.

There are K = 3 uncorrelated signals originating from [40◦, 85◦, 95◦]. The results are shown

in Fig. 6.6. When L ≤ 10, the MUSIC, Capon and ℓ1-SVD algorithms cannot obtain the

true signal directions with a high frequency. ℓ2,1-norm, NSW-L1-L2 and our proposed method

perform well and can achieve the true signal directions with a high probability. Particularly,

our proposed method can obtain the true signal directions at a higher frequency compared to

the NSW-L1-L2 algorithm. When L = 3, the frequency of direction of our proposed method is

close to 98%, while the frequency of direction of the NSW-L1-L2 algorithm is close to 85%.

In the fourth simulation, the relation between the frequency of detection and the SNR is

considered. The number of sensors is set to M = 10. The number of snapshots is fixed at

L = 10. We set SNR ∈ {0, 2, 4, 6, 8, 10} dB. There are K = 3 uncorrelated signals originating

from [40◦, 85◦, 95◦]. The results are shown in Fig. 6.7. When SNR ≤ 10 dB, the MUSIC,

Capon ℓ1-SVD and JLZA-DOA algorithms cannot obtain the true signal directions with a high

frequency. NSW-L1-L2 and our proposed method perform well and can obtain the true signal

directions with a high probability. Particularly, our proposed method can obtain the true signal

directions at a higher frequency compared to the NSW-L1-L2 algorithm. When SNR = 2 dB,

the frequency of direction of our proposed method is close to 100%, while the frequency of
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direction of the NSW-L1-L2 algorithm is is only 80%.

In the fifth simulation, the relation between the frequency of detection and the number of

sensors is considered. The number of snapshots is fixed at L = 10. The SNR is set at 10 dB.

The number of sensors is set to M ∈ {6, 8, 10, 12, 14}. There are K = 3 uncorrelated signals

originating from [40◦, 85◦, 95◦]. The results are shown in Fig. 6.8. When M > L = 10, the

Capon algorithm fails because the covariance matrix of the received signal is not a full rank

matrix, namely, the inverse of the covariance matrix of the received signal cannot be achieved.

The MUSIC, ℓ1-SVD and JLZA-DOA algorithms also cannot obtain the true signal directions

with a high frequency. Again, ℓ2,1-norm, NSW-L1-L2 and our proposed method perform well

and can obtain the true signal directions with a high probability. Particularly, our proposed

method can obtain the true signal directions at a higher frequency of detection compared to the

NSW-L1-L2 algorithm.

In the sixth simulation, the sensitivity to K̃ is considered. In general, the number of true

sources is usually unknown and needs to be estimated. Some source enumeration methods, such

as the minimum description length (MDL) method [92], the smoothed rand profile (SRP) method

[93], the gershgorin disks methd [94] and the cross-correlation transformation (CCT) method [95]

can be used to estimate the number of true signal sources. However, the performances of these

methods worsens when the number of snapshots is small and the SNR is low. Thus, the sensitivity

of our proposed method to K̃ must be considered. The results are shown in Fig. 6.9. There are

3 uncorrelated sources originating from [40◦, 85◦, 95◦]. M = 10, L = 10 and SNR=10 dB. It

can be found that although K̃ is set to a value larger than that of K, the estimated results are

not affected. Hence, our proposed method is not very sensitive to K̃. However, the calculation

time will increase as K̃ increases, as shown in Table 2.

Table 6.2: Calculation time of the proposed method

K̃ 3 4 5 6 7 8

Time (sec) 1.722 1.915 2.150 2.445 2.735 3.157

Finally, the proposed method is applied for 2D-DOA estimation by a uniform plane array with

10×10 sensors and L = 10 snapshots. The distance between the sensors is set as dx = dy = ℓ/2.

Sampling grids with a range from 0◦ to 90◦ with a 5◦ interval are used in the first stage. Then,

the selected areas are divided into denser sampling grids with an interval of 1◦ in the second

stage. There are K = 2 uncorrelated signals originating from (30◦,60◦) and (60◦,70◦). The SNR

is 10 dB. Only the K̃ = 7 largest elements in matrix J(p, q) is selected for the grid search. The
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results are shown in Fig. 6.10. It can be found that the area in which the true sources exist

can be pre-estimated in the first stage. Thus, the dimensions of the measurement matrix are

reduced, as only the selected areas are used for the grid search. In the second stage, the signal

sources can be found.

At last, the pre-estimation can be used before the ℓ1-SVD, JLZA-DOA and NSW-L1-L2

algorithms to quickly identify the candidate or potential areas where true sources may exist.

The pre-estimation is able to reduce the calculating time without the performance degradation.

The simulation results are shown in Fig. 6.11, Fig. 6.12 and Fig. 6.13. We set K = 3

uncorrelated signals originating from [40.5◦, 95.0◦, 125.5◦], L = 10 and SNR = 20 dB.

Fig. 6.11 (a) shows the results solved by the NSW-L1-L2 algorithm without pre-estimation.

We start with a sampling grid whose interval is 1◦ and obtain an approximate source direction.

Then we make the sampling grid finer (0.1◦ interval) around the approximate source direction

and refine the estimates. In each stage, the NSW-L1-L2 algorithm is used. Fig. 6.11 (b) shows

the results solved by the NSW-L1-L2 algorithm with pre-estimation. We start with a sampling

grid whose interval is 10◦ and obtain an approximate source direction by CBF. Then we refine

the sampling grid as 1◦ interval in the second stage and 0.1◦ interval in the third stage. The

NSW-L1-L2 algorithm is only used in the last two stages. It can be found that both the two

methods obtain the true source directions. Fig. 6.11 (c) shows the calculation time of these

two methods. The NSW-L1-L2 algorithm without pre-estimation takes 8.8692s to obtain the

true source direction. Especially, the first stage takes 7.3003s. The NSW-L1-L2 algorithm with

pre-estimation only takes 3.3242s to obtain the true source direction. CBF takes 0.0020s to

identify the source areas. It results in the decreasing of the calculation time to identify the

source direction by 1◦ grid resolution.

Fig. 6.12 (a) shows the results solved by the JLZA-DOA algorithm without pre-estimation.

As the same as the previous simulation, we search the true source directions using 1◦ grid

resolution first. Then 0.1◦ grid resolution is used around the approximate source direction. In

each stage, the JLZA-DOA algorithm is used. Fig. 6.12 (b) shows the results solved by the

JLZA-DOA algorithm with pre-estimation. We start with 10◦ grid resolution and obtain an

approximate source direction by CBF. Then 1◦ grid resolution is used around the approximate

source direction in the second stage and 0.1◦ grid resolution is used in the third stage. The

JLZA-DOA algorithm is only used in the last two stages. It can be found that both the two

methods obtain the true source directions. Fig. 6.12 (c) shows the calculation time of these

two methods. The JLZA-DOA algorithm without pre-estimation takes 4.8531s to obtain the

true source direction. Especially, the first stage takes 4.1933s. The JLZA-DOA algorithm with
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Figure 6.4: DOA estimation results estimated for three sources at 40◦, 110◦ and 120◦ utilizing 10
sensors with 5 snapshots in an SNR=10 dB environment. Blue lines denote the DOA estimation
results, and red dotted lines with round markers denote the true signal directions.(a) MUSIC.
(b) Capon. (c) ℓ1-SVD. (d) JLZA-DOA, (e) NSW-L1-L2. (f) Pre-estimation (the first stage of
our proposed method). (g) The final result of our proposed method.

pre-estimation only takes 1.2425s to obtain the true source direction. CBF takes 0.0013s to

identify the source areas. It results in the decreasing of the calculation time to identify the

source direction by 1◦ grid resolution.

Fig. 6.13 (a) shows the results solved by the ℓ1-SVD algorithm without pre-estimation.

As the same as the previous experiment, we search the true source directions using 1◦ grid

resolution first. Then 0.1◦ grid resolution is used around the approximate source direction. In

each stage, the ℓ1-SVD algorithm is used. Fig. 6.12 (b) shows the results solved by the ℓ1-SVD

algorithm with pre-estimation. We start with 10◦ grid resolution and obtain an approximate

source direction by CBF. Then 1◦ grid resolution is used around the approximate source direction

in the second stage and 0.1◦ grid resolution is used in the third stage. The ℓ1-SVD algorithm

is only used in the last two stages. It can be found that both the two methods obtain the true

source directions. Fig. 6.12 (c) shows the calculation time of these two methods. The ℓ1-SVD

algorithm without pre-estimation takes 5.7136s to obtain the true source direction. Especially,

the first stage takes 4.1048s. The ℓ1-SVD algorithm with pre-estimation only takes 3.4813s to

obtain the true source direction. CBF takes 0.0027s to identify the source areas. It results in

the decreasing of the calculation time to identify the source direction by 1◦ grid resolution.
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Figure 6.5: DOA estimation results estimated for three sources at 40.5◦, 110.8◦ and 120.5◦

utilizing 10 sensors with 5 snapshots in the SNR=10 dB environment. Blue lines denote the DOA
estimation results, and red dotted lines with round markers denote the true signal directions.
(a) MUSIC. (b) Capon. (c) ℓ1-SVD. (d) JLZA-DOA, (e) NSW-L1-L2. (f) Pre-estimation (the
first stage of our proposed method). (g) The final result of our proposed method.

Figure 6.6: Frequency of direction against the number of snapshots, whereM = 10 and SNR= 10
dB. There are K = 3 signal sources at θ1 = 40◦, θ2 = 85◦ and θ3 = 95◦.
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Figure 6.7: Frequency of direction against the SNR, where M = 10 and L = 10. There are
K = 3 sources at θ1 = 40◦, θ2 = 85◦ and θ3 = 95◦.

Figure 6.8: Frequency of direction against the number of sensors, where SNR= 10 dB and
L = 10. There are K = 3 signal sources at θ1 = 40◦, θ2 = 85◦ and θ3 = 95◦.
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Figure 6.9: Results against K̃, where SNR= 10 dB, L = 10 and M = 10. There are K = 3
sources at θ1 = 40◦, θ2 = 85◦ and θ3 = 95◦.

Figure 6.10: 2D-DOA estimation result for two signal sources at (30◦,60◦) and (60◦,70◦) utilizing
10 × 10 uniform plane array with 10 snapshots in the SNR=10 dB environment. Blue cross
symbol denotes the true source. Red round symbol denotes the estimated source. Colored grids
correspond to J(p, q). A yellow grid indicates a large value, while a cyan grid indicates a small
value. The red box denotes the selected possible area for grid search.

67



Figure 6.11: DOA estimation results estimated for three sources at [40.5◦, 95.0◦, 125.5◦] with 10
snapshots. (a) the NSW-L1-L2 algorithm without pre-estimation. (b) the NSW-L1-L2 algorithm
algorithm with pre-estimation. (c) the calculation time.

Figure 6.12: DOA estimation results estimated for three sources at [40.5◦, 95.0◦, 125.5◦] with 10
snapshots. (a) the JLZA-DOA algorithm without pre-estimation. (b) the JLZA-DOA algorithm
with pre-estimation. (c) the calculation time.

68



Figure 6.13: DOA estimation results estimated for three sources at [40.5◦, 95.0◦, 125.5◦] with 10
snapshots. (a) the ℓ1-SVD algorithm without pre-estimation. (b) the ℓ1-SVD algorithm with
pre-estimation. (c) the calculation time

6.5 Conclusions

In this paper, we propose the dimension-reduced DOA estimation method for the case of a few

snapshots based on CBF to focus on the most possible search areas. CBF is used to select the

search areas in which the true signal directions exist for a coarse sampling grids because of its

property of low-resolution. Then, it can decrease the calculation time for the grid search in the

second stage. In addition, we extend our proposed method from 1D-DOA estimation to 2D-DOA

estimation. The simulation results show that our proposed method has a higher frequency of

direction and requires less calculation time compared to the existing DOA estimation algorithms.

Furthermore, our proposed method is not sensitive to the parameter K̃. Hence, it can work even

when K̃ is larger than the number of true sources. In addition, the simulation results verify the

effectiveness of our proposed method for 2D-DOA estimation.

6.6 Proof of the position of the first null point

In this appendix, we derive the position of the first null point. First, the null point has the

following properties:

|χ (ϕ, θ)| =
∣∣∣∣aH(ϕ)a(θ)

M

∣∣∣∣ = 0, (6.6.1)

where

aH(ϕ)a(θ) =

M∑
m=1

exp {j2π(m− 1)d [cos (ϕ)− cos (θ)] /ℓ}, (6.6.2)
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with m denoting the m-th sensor and d denoting the distance between two adjacent sensors. We

assume that d/ℓ = 1/2. Thus, 6.6.1 can be written as∣∣∣∣∣
M∑

m=1

exp {jπ(m− 1) [cos (ϕ)− cos (θ)]}

∣∣∣∣∣ = 0. (6.6.3)

We set x = cos (ϕ)− cos (θ); thus, equation 6.6.3 can be simplified to∣∣∣∣∣
M∑

m=1

exp {jπ(m− 1)x}

∣∣∣∣∣ =
∣∣∣∣∣

M∑
m=1

(exp {jπx})m−1

∣∣∣∣∣ = 0. (6.6.4)

(exp {jπx})m−1 is a geometric progression. Hence, the sum of (exp {jπx})m−1 can be written

as follows:
1− (exp {jπx})M

1− exp {jπx}
= 0. (6.6.5)

Obviously, exp {jπx} ̸= 1. Hence, the solution satisfies (exp {jπx})M = 1, namely,

x =
2i

M
, for M > 1, i = ±1,±2,±3, ..... (6.6.6)

The position of the first null point closet to θ is given as follows:

ϕnull = arccos

[
cos (θ)± 2

M

]
. (6.6.7)
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Chapter 7

Adaptive filtering algorithm for DOA

estimation with small snapshots

In the proceeding chapter, it has been shown that the CBF method can be used to find the

search areas in which the true signal sources exist for a coarse sampling grids. And only the

selected areas are used for grid search with high-resolution by ℓ2,1-norm penalty. It can reduce

complexity effectively. However, the grid search processing still has a high resolution because

the ℓ2,1-minimization based on the CS requires the matrix inversion operation in each iteration.

This chapter is to further study the low-complexity CS algorithm for DOA estimation with

small snapshots. In this chapter, we will propose a new algorithm to solve the ℓ2,1-minimization

problem without the matrix inversion. Thus, the complexity can be further reduced by our

proposed adaptive filter based CS algorithm.

The adaptive filter [96–98] has been widely used in signal processing for system identification

due to its simplicity. In each iteration, only vector operation is used to adjust the weight

parameters in the filter under an specific constraint. Motived by the adaptive filter, a novel

adaptive filtering algorithm is proposed in this chapter for DOA estimation with small snapshots.

The proposed algorithm is simple because it is based on the adaptive filter, and it is high accuracy

because it utilizes the joint sparse characteristic of the CS-based DOA estimation model.

7.1 Adaptive filter framework for DOA estimation

7.1.1 Adaptive filter

The adaptive filtering algorithms have been widely used due to its good performance, low com-

plexity, and reliable robustness. Fig. 7.1 (a) shows the diagram of the adaptive filter. Least

mean squares (LMS) algorithm is a classical adaptive filtering algorithm [99]. It is used to find
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(a)

(b)

Figure 7.1: The diagram of the adaptive filter (a) and matrix adaptive filter (b).

the the original signal that relates to producing the least mean square of the error signal between

the input and output of a filter. The residual error signal r(i) of the LMS algorithm for complex

data is denoted by

r(i) = d(i)− sH(i)h(i), (7.1.1)

where h(i) = [h1(i), ..., hN (i)]T is the original signal, which is often referred to as the filter

coefficient in the adaptive filter, s(i) = [s(i), s(i − 1), ..., s(i − N + 1)]T is the input signal,

i is the iteration number, and N is the filter length. The output signal is constructed by

d(i) = sH(i)h(i) + z(i), where z(i) is the noise. By minimizing the residual error r(i), h(i)

contaminated by the noise z(i) can be reconstructed iteratively by the LMS algorithm as:

h(i+ 1) = h(i) + µr(i)s(i), (7.1.2)

where µ is the step-size.
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Recalling Eq. (5.8), the DOA estimation with a single snapshot can be formulated as an

SMV problem. A link between the adaptive filter and the SMV problem has been proposed

in [41]. The correspondences are listed in Table. 7.1.

Table 7.1: Correspondences between variables in DOA estimation problem with single snapshot
(SMV problem) and adaptive filter

SMV (t = 1) adaptive filter

Φm (the mth row in matrix Φ)
m ∈ {1, ...,M} sH(i)

x(t) h(i)

ym(t) = Φmx(t) + ēm(t) d(i) = sH(i)h(i) + z(i)

m = mod(i,M) + 1 iteration number i

In general, small snapshots can be used for DOA estimation in MIMO systems and achieve a

better estimation performance than a single snapshot. Since Y and S are matrices, the adaptive

filtering algorithm of [41] cannot be directly used for the DOA estimation with small snapshots.

In this paper, a matrix adaptive filter is used to extend the adaptive filter from SMV (original

signal x(t) is a vector, where t = L = 1) to MMV (original signal X is a matrix, where

t ∈ [1, L], L > 1). For the matrix adaptive filter, the source signal x(t) at each time t are treated

as an independent original signal ht(i). At different time t, the input signal sH(i), namely Φm is

consistent. The diagram of the matrix adaptive filter is shown in Fig. 7.1 (b). The cost function

of the LMS algorithm for the matrix filter can be defined as:

F (i) =
1

2

[
ym(t)− sH (i)ht (i)

]2
. (7.1.3)

By minimizing Eq. (7.1.3), the gradient descent recursion of x(i, t) can be written as

ht (i+ 1) = ht (i) + µ
∂F (i)

∂ht (i)

= ht (i) + µr (i) s (i) ,

(7.1.4)

where r(i) = ym(t)− sH (i)ht (i) is the residual error. Please note that although Eq. (7.1.4)

cannot achieve a sparse solution directly. It is written here to show the framework of DOA

estimation with small snapshots. Its improved form for solving the sparse solution will be

described in detail in the following subsection.

Recalling Eq. (5.9), the DOA estimation with small snapshots can be formulated as an MMV

problem. Thus, we list the link between the matrix adaptive filter and the MMV problem with

small snapshots in Table. 7.2.

When the matrix adaptive filter is used to solve the MMV problem, there may not be
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Table 7.2: Correspondences between variables in DOA estimation problem with small snapshots
(MMV problem) and matrix adaptive filter

MMV (t ∈ {1, ..., L}) matrix adaptive filter

Φm (the mth row in matrix Φ)
m ∈ {1, ...,M} sH(i)

x(t) ht(i)

ym(t) = Φmx(t) + ēm(t) d(i) = sH(i)ht(i) + z(i)

m = mod(i,M) + 1 iteration number i

t = ⌊i/M⌋+ 1

enough data in Φ for updating the signal x(t) to steady state. Hence, each row in Φ and the

corresponding elements ym(t) are utilized recursively.

7.1.2 Mixed norm penalty

The adaptive filtering algorithm cannot directly generate a sparse solution for Eq. (7.1.4).

In fact, adding a suitable sparse penalty, such as ℓ0-norm, into the cost function of the LMS

algorithm can attract most entries in the solution to zero (see [17, 41, 98]). Note that both the

real and imaginary parts of the matrix X are not just a sparse matrix, all its non-zero entries

are concentrated in a few rows. Therefore, X exhibits joint sparse characteristic. In order to

take the advantage of this characteristic, we propose a new mixed norm (ℓ2,0-norm) penalty

for the adaptive filtering algorithm based on ℓ0-norm penalty which has been used in the LMS

algorithm [41, 98]. The ℓ2,0-norm is the number of the non-zero rows. ℓ2,0-minimizing can find

a joint sparse solution which has the smallest number of rows that contain nonzero entries.

Denoting the solution at i iteration as Xi = [x(i, 1), ...x(i, L)], an ideal ℓ2,0-norm of Xi can

be written as [100]:

∥Xi∥2,0 =
N∑

n=1

I
(∥∥XR

i (n, :)
∥∥2
2

)
+ j

N∑
n=1

I
(∥∥XI

i (n, :)
∥∥2
2

)
, (7.1.5)

where XR
i (n, :) and XI

i (n, :) denote the real and imaginary parts of the nth row of Xi, and the

indicator function I is given by [10]

I(x) =

{
0, x = 0

1, otherwise.
(7.1.6)

As the indicator function I(x) is not smooth, we choose a popular approximation function

[41,101] to replace it:

I(x) ≈ 1− e−α|x|. (7.1.7)
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The values of Eqs (7.1.6) and (7.1.7) will approach closer while α → ∞. Thus, ∥Xi∥2,0 can be

written as

∥Xi∥2,0 ≈
N∑

n=1

1− e−α∥XR
i (n,:)∥2

2 + j

N∑
n=1

1− e−α∥XI
i (n,:)∥

2

2 . (7.1.8)

Incorporating Eq. (7.1.8) into Eq. (7.1.3), a new cost function can be given:

Fnew(i) =
1

2
[ym(t)− Φmx (i, t)]2︸ ︷︷ ︸

term1

+β ∥Xi∥2,0︸ ︷︷ ︸
term2

, (7.1.9)

where term 1 is the mean square error term, term 2 is the sparse penalty term, β is the regu-

larization parameter which trades off terms 1 and 2. By minimizing Eq. (7.1.9), the gradient

descent recursion of x(i, t) can be rewritten as

xn(i+ 1, t) = xn(i, t) + µ
∂Fnew(i)

∂x(i, t)

= xn(i, t) + µr(i)a∗m
(
θ̄n
)

− κ

(
e−α∥XR

i (n,:)∥2
2xRn (i, t) + je−α∥XI

i (n,:)∥
2

2xIn(i, t)

)
,

(7.1.10)

where κ = 2µβα, xRn (i, t) and xIn(i, t) are the real and imaginary parts of xn(i, t). To reduce

the computational complexity of the above formulation, especially the sparse penalty term, the

first-order Taylor series expansion of exponential functions will be used instead as follows:

e−αx2 ≈

{
1− αx2 x2 ≤ 1

α ;

0 otherwise.
(7.1.11)

Since the value of exponential function is obviously larger than zero, the approximation of the

above formulation is limited to be positive. Then, substituting it into Eq. (7.1.10), a final

gradient descent recursion for Xi can be written as

xn(i+ 1, t) = xn(i, t) + µr(i)a∗m
(
θ̄n
)
− κ

(
gR(n, i)xRn (i, t) + jgI(n, i)xIn(i, t)

)
, (7.1.12)

where gR(n, i) = 1−α
∥∥XR

i (n, :)
∥∥2
2
and gI(n, i) = 1−α

∥∥XI
i (n, :)

∥∥2
2
, respectively. The proposed

algorithm is listed in 6.

7.2 Performance analysis

Here, the real part of data is used to analyze the complexity and steady-state performance for

simplicity. The analysis of the imaginary part of data can be done in the similar way. The data

listed below are all real parts of the signal model.
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Algorithm 6 The ℓ2,0-LMS algorithm

Input:
The manifold matrix Φ,
The sampled signal Y,
The parameter µ, κ, α,
The limited error ε, the maximum iteration number C.

Initialization:
1. Set i = 1, 2. Set X(i) = 0,

Iteration:
3. Set

ym(t) = Y(m, t), (7.1.13)

r(i) = ym(t)−Φmx(i, t), (7.1.14)

where m = mod(i,M)+1, t = ⌊i/M⌋+1, Φm is the mth row in matrix Φ, and x(i, t) is the
tth column in matrix X(i).
4. Update X(i) by Eq. 7.1.10.
5. Increase i by one, and judge whether the following termination condition is satisfied:

∥X(i)−X(i− 1)∥2 < ε or i > C, (7.1.15)

When Eq. 7.1.15 is not satisfied, go back to 3, otherwise go to output.
Output: The estimated DOA S# = ∥Xi∥2,0.

Table 7.3: Computational complexities of ℓ0-LMS and ℓ2,0-LMS in each period

Methods Equation Multiplications Additions

ℓ0-LMS
Residual calculation MNL MNL

Gradient descent recursion
without sparse penalty

2MNL MNL

Sparse penalty 3MNL MNL

ℓ2,0-LMS
Residual calculation MNL MNL

Gradient descent recursion
without sparse penalty

2MNL MNL

Sparse penalty MNL(L+ 3) MNL(L+ 1)
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Computational complexity: The complexity of each iteration is analyzed in this part. For

simplicity, we use a “period” instead of an iteration to analyze the complexity. The “period” is

defined as that all the row vectors Φm in the measurement matrix Φ have been adopted once for

all the original signal ht. The complexity of our proposed algorithm and the ℓ0-LMS algorithm

are compared. Note that the ℓ0-LMS algorithm cannot be applied directly for the MMV form.

To compare the complexity, it is used to solve each column in X as a SMV form. It means that

in one “period”, all columns in X will be solved like the ℓ2,0-LMS algorithm. The complexities

are listed in Table. 7.3. The increased complexity is caused by calculating ∥Xi(n, :)∥22 for sparse

penalty. While it improves the estimation performance as it gives the joint sparsity of snapshots

at all times. In general, the adaptive filtering algorithm is used for DOA estimation with a few

snapshots, namely, L is very small. Hence, compared to the ℓ0-LMS algorithm, the increase in

complexity of the ℓ2,0-LMS algorithm is limited.

Steady-state performance analysis: In this part, we will analyze the steady-state mean square

derivation between the original signal and the reconstructed signal. And the bound of step-size

µ to guarantee convergence will be given.

Suppose that xo is the wiener solution, thus the signal received by the mth sensor at time t

can be written as [41]

ym(t) = Φxo(t) + ēm(t), (7.2.1)

where ēm(t) is the measurement noise at the mth sensor at time t. Assuming ēm(t) is Gaussian

noise with zero mean, the misalignment can be defined as

vt(i) = x(i, t)− xo(t). (7.2.2)

For simplicity, we define that

gt(i) = [g(1, i)x1(i, t), ..., g(N, i)xN (i, t)]T . (7.2.3)

Subtract xo(t) from both sides of Eq. (7.1.12):

x(i+ 1, t)− xo(t) = x(i, t) + µΦT
m [ym(t)−Φmx(i, t)]− κgt(i)− xo(t). (7.2.4)

It is equivalent to

vt(i+ 1) =
[
I− µΦT

mΦm

]
vt(i) + µΦT

mēm(t)− κgt(i). (7.2.5)
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The square of the ℓ2-norm of the misalignment can be written as

∥x(i+ 1, t)− xo(t)∥22 = ∥vt(i+ 1)∥22 = tr
[
vt(i+ 1)vT

t (i+ 1)
]
. (7.2.6)

We have then that

vt(i+ 1)vT
t (i+ 1) =

[[
I− µΦT

mΦm

]
vt(i) + µΦT

mēm(t)− κgt(i)
]

×
[[
I− µΦT

mΦm

]
vt(i) + µΦT

mēm(t)− κgt(i)
]T

=
[
I− µΦT

mΦm

]
vt(i)v

T
t (i)

[
I− µΦT

mΦm

]T
+ µēm(t)

[
I− µΦT

mΦm

]
vt(i)Φm

− κ
[
I− µΦT

mΦm

]
vt(i)g

T
t (i)

+ µēm(t)ΦT
mvT

t (i)
[
I− µΦT

mΦm

]T
+ µ2ē2m(t)ΦT

mΦm

− µκēm(t)ΦT
mgT

t (i)

− κgt(i)v
T
t (i)

[
I− µΦT

mΦm

]T
− µκēm(t)gt(i)Φm

+ κ2gt(i)g
T
t (i).

(7.2.7)

Let

T(n) = E
{
vt(i)v

T
t (i)

}
(7.2.8)

denote a second moment matrix of the misalignment vector. Define the input correlation matrix

and the minimum mean-square estimation error as

R = E
{
ΦT

mΦm

}
, (7.2.9)

and

P0 = E
{
ē2m(t)

}
, (7.2.10)

respectively. Since the manifold matrix Φ satisfies Independence Assumption (see [88, 99]),

taking expectations on both sides of Eq. (7.2.7) yields

T(i+ 1) ≈T(i)− µ [T(i)R+RT(i)] + 2µ2RT(i)R

+ µ2Rtr (RT(i)) + 2κ (µR− I)E
{
vt(i)g

T
t (i)

}
+ κ2E

{
gt(i)g

T
t (i)

}
+ µ2P0R.

(7.2.11)
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According to [88], there is

R ≈MI, (7.2.12)

where M is the number of the sensors. Thus, Eq. (7.2.11) can be written as

T(i+ 1) ≈
[
1− 2Mµ+ 2M2µ2

]
T(i)

+ µM2tr (T(i)) I+ 2κ (µM − 1)E
{
vt(i)g

T
t (i)

}
+ κ2E

{
gt(i)g

T
t (i)

}
+ µ2MP0I.

(7.2.13)

Define

C(i) = tr (T(i)) . (7.2.14)

Taking the trace on both sides of Eq. (7.2.13), we have that

C(i+ 1) =
[
1− 2Mµ+ (N + 2)M2µ2

]
C(i)

+ 2κ (µM − 1)V (i) + κ2G(i) + µ2MNP0,
(7.2.15)

where
V (i) = E

{
vT
t (i)gt(i)

}
,

G(i) = E
{
gT
t (i)gt(i)

}
.

(7.2.16)

Both V (i) and G(i) are bounded as follows:

|V (i)| = |E {(x(i, t)− x(t))gt(i)}|

≤ E {|(x(i, t)− xo(t))gt(i)|}

≤
N∑

n=1

E {|(xn(i, t)− xon(t)) g(n, i)xn(i, t)|}

=
∑

∥Xi(n,:)∥22≤
1
α

E |(xn(i, t)− xon(t)) g(n, i)xn(i, t)|

=
∑

∥Xi(n,:)∥22≤
1
α

E {|(xn(i, t)− xon(t))xn(i, t)| |g(n, i)|}

≤
∑

∥Xi(n,:)∥22≤
1
α

E {|(xn(i, t)− xon(t))xn(i, t)|}

≤
∑

∥Xi(n,:)∥22≤
1
α

E
∣∣x2n(i, t)∣∣+ E |xn(i, t)xon(t)|

≤ N + ∥xo(t)∥1,

(7.2.17)
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and
|G(i)| =

∣∣E {gT
t (i)gt(i)

}∣∣
≤ E

∣∣gT
t (i)gt(i)

∣∣
≤

N∑
n=1

E
∣∣g2(n, i)x2n(i, t)∣∣

≤ N.

(7.2.18)

Therefore, in order to guarantee convergence of Eq. (7.2.15), the following condition should be

satisfied: ∣∣1− 2Mµ+ (N + 2)M2µ2
∣∣ < 1. (7.2.19)

Thus the step-size should be chosen by

0 < µ <
2

M (N + 2)
. (7.2.20)

Let i→∞, the mean square derivation in steady state is

C (∞) =
[
1− 2Mµ+ (N + 2)M2µ2

]
C(∞)

+ 2κ (µM − 1)V (∞) + κ2G(∞) + µ2MNP0.
(7.2.21)

It is equivalent to

C (∞) = B
[
2κ (µM − 1)V (∞) + κ2G(∞) + µ2MNP0

]
, (7.2.22)

where

B =
1

2Mµ− (N + 2)M2µ2
. (7.2.23)

By Eqs. (7.2.17) and (7.2.18), we have the upper bound of the derivation as follows

E
{
∥xF (t)− xo(t)∥22

}
≤ B

[
2κ (µM − 1) (N + ∥xo(t)∥1) + κ2N + µ2MNP0

]
, (7.2.24)

where xF (t) denotes the reconstruction signal by the ℓ2,0-LMS algorithm.

7.3 Simulation results

We first consider a typical massive MIMO uniform linear array (ULA) with M = 100 sensors.

The total number of snapshots is L = 2. There are N = 91 potential DOAs and these are

distributed uniformly over the range [0◦, 180◦]. The frequency of signals fo is 900MHz, and

the sampling frequency fs is 450MHz. The distance between the sensors is equal to half the

wavelength λ = c/fo, where c is the velocity of light. The ℓ2,0-LMS algorithm is compared
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with the JLZA-DOA [10], M-FCOUSS [102], MSMPDOA [103] ℓ0-LMS [41] algorithms and

the traditional DOA methods (Capon’s method [12] and MUSIC [11]), the reduced-rank DOA

estimation [104] and the NLMS algorithm [105]. Note that the JLZA-DOA, M-FCOUSS and

MSMPDOA algorithms can be compared directly as they are proposed for DOA estimation with

small snapshots. The ℓ0-LMS algorithm [41] cannot be applied directly for DOA estimation with

small snapshots, because it is proposed for the SMV problem. In order to compare the estimation

performance, we use the ℓ0-LMS algorithm to solve each column in X as a SMV problem. Thus

it can also be used to solve the matrix X as other algorithms.

In the first experiment, there are K = 2 uncorrelated source signals originating from

[40◦, 80◦]. We set SNR as 10 dB. The parameter for each algorithm are set as follows:

• JLZA-DOA: ρ = 0.3, η = 0.5, γ = 0.5, β = 0.5;

• M-FCOUSS: p = 0.5;

• MSMPDOA: K = N/4;

• ℓ0-LMS: α = 5, µ = 4× 10−3, κ = 1× 10−4

• ℓ2,0-LMS: α = 5, µ = 4× 10−3, κ = 1× 10−4

• MUSIC: the number of source signals KMUSIC = 2

• Reduced-rank DOA estimation: the number of source signals KRD = 2

• NLMS: µ = 0.1

The results are shown in Fig. 7.2. It can be found that the MSMPDOA, ℓ0-LMS, ℓ2,0-LMS,

NLMS algorithms and the MUSIC can reconstruct the source signals at [40◦, 80◦], which are the

true DOAs. However, due to the noise, the MSMPDOA algorithm will bring some false signals

at the other potential DOAs. In order to show the good performance of our algorithm under

limit of the number of sensors in more detail , we set as M = 10 and the result is shown in Fig.

7.3. It can be found that except the MUSIC, Capon’s method, reduced-rank DOA estimation

and NLMS algorithm, all CS-based algorithms can reconstruct the source signals at [40◦, 80◦].

However, the JLZA-DOA, M-FOCUSS and MSMPDOA algorithms will bring some false signals

at the other potential DOAs.

By taking the ℓ2-norm of the source signals at each potential DOAs as,

Power
(
θ̄n
)
= log

[
L∑

t=1

x2n(t)

]
, (7.3.1)
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Figure 7.2: (M = 100) (1) DOA estimation results and (2) Multiple snapshot reconstruction
with the ULA for original signal (a), JLAZ-DOA (b), M-FCOUSS (c), MSMPDOA (d), ℓ0-
LMS (e), ℓ2,0-LMS (f), MUSIC (g), Capon’s method (h), Reduced-rank DOA estimation (i) and
NLMS (j).

the DOA estimation results are achieved. It can be found that some false source signals exist in

the results of the JLZA-DOA, M-FCOUSS and MSMPDOA algorithms due to the false signals.

In the second experiment, the reconstruction accuracy against sensor number (M) is studied.

In order to analyze the limit of the number of sensors, M is set as [10, 20, 40, 60, 80, 100]. SNR

is set as 10 dB. The average RMSEs are obtained after 100 Monte Carlo trials. The results are

shown in Fig. 7.4. It can be found that whenM ≤ 60, the RMSE of all algorithms decreases asM

increases. When M > 60, the RMSEs of the JLZA-DOA and M-FOCUSS algorithms increases

rapidly, while the RMSEs of the MSMPDOA, ℓ0-LMS and ℓ2,0-LMS algorithms decrease. Hence,

our proposed algorithm has the lowest RMSE than other algorithms for massive MIMO systems.

In the third experiment, the reconstruction accuracy against noise is studied. The sensor

number is set as M = 24. The total number of snapshots is L = 5. SNR is set as [0, 5, 10, 15, 20]

dB. We use root mean square error (RMSE) to evaluate the reconstruction accuracy which is

defined as

RMSE =

√
L∑
i=1

N∑
j=1

(
x̂i,j − xtruei,j

)2
L

, (7.3.2)

where x̂i,j denotes the element of the jth column and the ith row in the estimated X, and x̂truei,j

denotes the element of the jth column and the ith row in the true X. The average RMSE

obtained after 100 Monte Carlo trials. The results are shown in Fig. 7.5. It can be found that

the RMSE decreases as SNR increases. When SNR is small (SNR<20 dB), the adaptive filtering
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Figure 7.3: (M = 10) (1) DOA estimation results and (2) Multiple snapshot reconstruction with
the ULA for original signal (a), JLAZ-DOA (b), M-FCOUSS (c), MSMPDOA (d), ℓ0-LMS (e),
ℓ2,0-LMS (f), MUSIC (g), Capon’s method (h), Reduced-rank DOA estimation (i) and NLMS
(j).
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Figure 7.4: RMSE against sensor number.
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Figure 7.7: RMSE against source number.

84



Figure 7.8: The structure of the coprime array.
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Figure 7.9: (1) DOA estimation results and (2) Multiple snapshot reconstruction with the
coprime array for original signal (a), JLAZ-DOA (b), M-FCOUSS (c), MSMPDOA (d), ℓ0-LMS
(e), ℓ2,0-LMS (f), MUSIC (g) and Capon’s method (h).

algorithms and the MSMPDOA algorithm can achieve the lower RMSE than the JLZA-DOA

and M-FOCUSS algorithms. Our proposed algorithm (ℓ2,0-LMS) has the lowest RMSE when

SNR is smaller than 15 dB.

In the forth experiment, the reconstruction accuracy against snapshots (L) is studied. SNR

is set as 10 dB and the number of snapshots is set as [5, 10, 15, 20]. The other parameters are

set as the same as the second experiment. The average RMSE obtained after 100 Monte Carlo

trials. The results are shown in Fig. 7.6. It can be found that the RMSEs of all algorithms

decrease as L increases. Our proposed algorithm (ℓ2,0-LMS) has the lowest RMSE.

In the fifth experiment, the reconstruction accuracy against source number (K) is studied.

SNR is set as 10 dB and the number of sources is set as [1, 2, 3, 4, 5]. The other parameters are

set as the same as the second experiment. The average RMSE obtained after 100 Monte Carlo

trials. The results are shown in Fig. 7.7. It can be found that the RMSEs of all algorithms

increase as K increases. Our proposed algorithm (ℓ2,0-LMS) has the lowest RMSE in most cases.
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In the sixth experiment, the case with a coprime array with M = 8 sensors is considered

[106, 107]. The structure of the coprime array is shown in Fig. 7.8. It is constructed by two

subarrays. The distance between the two adjacent detectors in one subarray is 3d, and the

distance between the two adjacent detectors in anther subarray is 5d. The first sensors in both

subarrays are co-located at the zeroth position, and the last sensors in both subarrays are co-

located at the terminal position. The total number of snapshots is L = 5. SNR is set as 0

dB. The other parameters are set as the same as the first experiment. The results are shown

in Fig. 7.9. It can be found that except the MUSIC and Capon’s method, all these algorithms

can reconstruct the source signals at [40◦, 80◦], which are the true DOAs. However, some false

signals at the other potential DOAs are estimated in the JLZA-DOA, M-FCOUSS, MSMPDOA

and ℓ0-LMS algorithms because of the noise. Only the proposed ℓ2,0-LMS algorithm can achieve

the real DOAs.
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Chapter 8

Conclusions and future works

This chapter summarizes the main results of this thesis and provides some possible future works.

8.1 Conclusions

This thesis has systematically studied the CS-based high resolution radar signal processing

algorithms. In order to reduce the complexity and improve the accuracy of the existing CS-

based radar signal processing algorithms, the low-complexity CS-based algorithms have been

proposed. The main contributions are drawn as follows.

• 2D CS-based algorithms for delay Doppler joint estimation

We have proposed a 2D data model for the pulse Doppler radar system with the RD

method. In this method, the data is under-sampled by a low rate ADC. Then the 2D CS-

based algorithms (i.e., 2D-ZAP, 2D-IHT, 2D-ISTA, and 2D-FISTA) have been proposed

for detecting the sparse targets from the under-sampled data. Since the 2D-CS algorithms

solve the 2D data model without vectorizing, the memory requirement and complexity are

significantly reduced. Numerical simulations have been provided to validate the perfor-

mances of our proposed algorithms.

• Robust 2D CS-based algorithms for delay Doppler joint estimation

In order to reduce interference from non-Gaussian impulse noise, the robust 2D CS-based

algorithms which are improved from 2D CS-based algorithms by robust cost function,

e.g., ℓ1-norm, ℓp-norm and LL2-norm. The simulation results show that the proposed

robust 2D-CS based algorithms have higher accuracy than the 2D-CS based algorithms in

non-Gaussian impulse noise environment.

• Dimension-reduced DOA estimation based on ℓ2,1-norm penalty
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The dimension-reduced DOA estimation method has been proposed for the case of small

snapshots. The proposed algorithm can decrease the calculation time for the grid search.

In addition, we extend our proposed method from 1D-DOA estimation to 2D-DOA esti-

mation. The simulation results show that our proposed method has a higher frequency of

direction and requires less calculation time than the existing DOA estimation algorithms.

• Adaptive filtering algorithm for DOA estimation with small snapshots

A novel adaptive filtering algorithm has been proposed for DOA estimation with small

snapshots. In order to utilize the joint sparsity of MMV, a mixed norm penalty is used

in the proposed ℓ2,0-LMS algorithm. The proposed algorithm inherits the low complexity

of the LMS algorithm, and improves the robustness against noise. The simulation results

show that, compared with the existing DOA estimation algorithms, our proposed algorithm

has a greater accuracy in low SNR environment.

8.2 Future works

Some directions for future research are as follows.

• In this thesis, we have shown the delay Doppler joint estimation and DOA estimation

based on CS theory, respectively. In the next step, the problem of how to estimate the

delay, the Doppler shift and the angle at the same time will be considered. Furthermore,

the relationship between the delay, the Doppler shift, and the angle will be researched and

used to reduce the algorithm complexity.

• This thesis only focuses on the ideal case that the target is a point. In practice, with

the resolution of radar improving, the high-resolution radar imaging becomes possible. To

further study the compressive sensing, the CS-based radar imaging problem would be very

interesting.

• In practice, such as self-driving, jamming and clutter will degrade the performance of the

CS-based algorithms. How to eliminate the interference of jamming and clutter in CS

framework would also be very interesting.
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