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Nomenclature 

a : radius of a sphere 

d : side length of a cube 

dcenter, dedge, dcorner : three diameters for the sphere-connected model 

dia : diameter of a sphere ia  

D
T
, D

R 
: translational and rotational diffusion coefficients 

e1, e2, e3 
: three plane direction vectors of a cubic particle 

)(1 te , )(2 te  : orthogonal unit vectors normal to the magnetic moment of a cubic particle 

fo.c.
(e)

(r)
 

: orientational pair correlation function 

F : force acting on the ambient fluid by a particle  

F
P
 : force acting on a particle  

Fij
(m)

 : magnetic force due to the magnetic particle-particle interaction 

F
(V)

, Fij
(V)

, Fiajb
(V)

 : repulsive force due to the overlap of steric layers 

g(r) : radial distribution function  

h : unit vector of a magnetic field H 

H : external magnetic field 

I : unit tensor 

k : Boltzmann’s constant 

Lx, Ly, Lz : size of a simulation region in each axis direction 

m : magnetic moment of a particle  

n : unit vector of a magnetic moment m 

n̂  : unit projection vector of a magnetic moment  
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ns : number of surfactant molecules per unit area 

n0 : particle number density 

N : total number of particles 

Npair : number of pairs of particles 

Ns : number of clusters for describing a cluster size distribution 

Nsmplmx : total MC steps for a MC simulation 

Nsph : number of spherical particles per cube side for Donaldson model 

Ntimemx : total number of time steps per simulation run for BD simulation 

Nup, Ndwn : number of particles with upward and downward pointing magnetic moments 

Pe : Peclet number 

P2(－) : second Legendre polynomial 

P4(－) : fourth Legendre polynomial 

r : radial distance for a radial distribution function g(r) 

rcoff : cutoff distance 

rclstr : criterion distance for the assessment of cluster formation 

ri : position vector of particle i 

rij : relative position vector from particle j to particle i 

R : resistance matrix 

Ra, Rb, Rc, Rd : resistance matrices 

Rupdwn : composition ratio regarding the number of two types of particles 

Re : Reynolds number 
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s : number of particles that make up each cluster for a cluster size distribution 

S1
(m)

, S2
(m)

, S3
(m)

 : order parameter of magnetic moments 

S4
(e)

 : order parameter of particle directions 

Sny, Snz : order parameter regarding the components of magnetic moments 

t : time 

tij : unit vector of vector rij 

T : absolute temperature of a liquid 

T : torque acting on the ambient fluid by a particle 

T
P
 : torque acting on a particle 

T i
(H)

 : magnetic torque due to the magnetic particle-field interaction 

T ij
(m)

 : magnetic torque due to the magnetic particle-particle interaction 

T
(V)

, Tij
(V)

, Tiajb
(V)

 : torque due to the overlap of steric layers 

ui
(H)

 : interaction energy of the magnetic particle-field interaction 

uij
(m)

 : interaction energy of the magnetic particle-particle interaction 

uiajb
(V)

 : interaction energy due to the overlap of steric layers  

U : total system potential energy 

U : inflowing uniform velocity  

v : velocity of a particle 

V : volume of a system 

T

cube
,

R

cube  : modification coefficients 

  : shear rate 
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δ : thickness of a uniform steric layer 

ΔNi(r) : number of particles existing in an infinitesimal area at a radial distance r 

Δr : width of an infinitesimal area 

ΔrMC : maximum random translational distance for Monte Carlo procedures 

Δr
B
 : random displacement inducing translational Brownian motion 

ΔS : infinitesimal area 

Δt : time interval 

ΔV : infinitesimal shell volume 

ΔMC : maximum random rotation angle for Monte Carlo procedures 

Β
  : random displacement inducing rotational Brownian motion 

η : liquid viscosity 

ηyx
F
, ηyx

TH
, ηyx

FT
 : viscosity components 

ηyx
total

 : net viscosity 

θ : polar angle from the z-axis 

)(n
ij  : angle between in̂  and jn̂  

λ : 
non-dimensional parameter representing the strength of the magnetic 

particle-particle interaction 

λV : 
non-dimensional parameter representing the strength of the repulsive 

interaction relative to the thermal energy 

μ0 : permeability of free space 

ν : kinematic viscosity 

ξ : 
non-dimensional parameter representing the strength of the magnetic 

particle-field interaction 

ξ
T
,
 
ξ

R
 : translational and rotational friction coefficients 
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ρ : density 

τyx
total

 : total shear stress 

 : azimuthal angle from the x-axis 

V : volumetric fraction of particles 

ψij
(p)

, ψij
(n)
 : angle between magnetic moment directions ni and nj  

),( lk
ij

ee  : angle between direction vectors ek and el of cubic particles i and j 

θ : orientational distribution function 

ω : angular velocity of a particle 

Ω : angular velocity of a flow field  

  : ensemble average 
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Chapter 1 Introductory remarks 

 

A magnetic particle suspension has a significant potential for application in a variety of 

engineering fields, and therefore numerous studies have been conducted up to the present time. 

In the field of fluid engineering, typical applications are magnetically-controlled fluid 

devices such as mechanical dampers and actuators [1-3], where the magnetorheological properties of 

a suspension are controlled by means of an external magnetic field. Magnetic particle suspensions 

with a large magnetorheological effect are required for the development of effective 

magnetically-controlled devices. The magnetorheological properties of a suspension are significantly 

dependent on the particle aggregates formed in the system and therefore it is required that the 

internal structure of the particle aggregates should be controlled in an appropriate manner by means 

of an external magnetic field. 

In the field of biomedical engineering, numerous studies are currently being conducted 

with regard to the development of a magnetically guided drug delivery system [4-19], whereby 

drug-loaded magnetic particles are guided to the targeted tissues or cells. In this research field, three 

main areas of study are required to develop the application of the drug delivery system, (1) a 

technique for loading drugs onto a magnetic particle [4-6], (2) a technique for controlling the 

behavior of the particle by an external non-uniform magnetic field [7-9] and (3) a technique for 

releasing drugs at a targeted position [10-13]. A variety of studies have been conducted in the fields 

of material science and biomedical engineering in order to generate highly functionalized particles 

for the efficient loading of drugs onto a magnetic particle. On the other hand, many fluid engineering 

researchers have conducted both simulation [14-17] and experimental studies [18, 19] on the 

behavior of magnetic particles in a blood vessel in order to elucidate the attachment and trapping 

characteristics of the magnetic particles to a targeted position under the influence of a non-uniform 

magnetic field.   

Currently, a large number of researchers have focused on the application of a magnetic 

particle suspension to a magnetic particle hyperthermia treatment [20-30]. Magnetic hyperthermia is 

a new medical treatment designed to kill targeted tumor or cancer cells by means of the heating 

effect arising from the relaxation of magnetic moments in a time-dependent magnetic field, such as, 

an alternating magnetic or a rotating magnetic field. In a magnetic particle suspension, there are two 

main relaxation mechanisms for the magnetic moment [24-27] which are (1) the Brownian 

relaxation mode and (2) the Néel relaxation mode. The Brownian relaxation mode is the heating 

mechanism for relatively large magnetic particles where the magnetic moment is fixed within the 

particle body and gives rise to heat production as the whole particle rotates to follow a 

time-dependent magnetic field. In contrast, in the Néel relaxation mode, heat production arises as the 

magnetic moment rotates within the particle while the particle as a whole remains fixed. Although a 
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variety of studies [21-23] regarding the application to magnetic hyperthermia have been performed 

for the smaller magnetic particles that produce a heating effect due to the Néel relaxation mechanism, 

however, several researchers have recently focused on the heat production due to the Brownian 

relaxation mechanism [28-30]. 

In the engineering field of environmental resource, magnetic particles are attractive from 

the viewpoint of new adsorption agents for improving the visibility of water in small lakes and ponds. 

There are a variety of techniques for improving the visibility of water [31-48], such as the method of 

stimulating a self-cleaning action by an aeration process [31], an adsorption method that employs 

active carbon and zeolite as the porous materials [32, 33], a filtering technique [34], and a 

coagulating sedimentation technique that employs flocculating agents such as aluminum sulfates 

[35]. The most appropriate technique is dependent on the conditions of the water pollution and the 

dimensions of the river, lake or pond and is typically adopted from one of the above methods. 

Currently, as indicated above, magnetic particles have been applied in the industrial field of 

adsorption agents. In this field, the process of a visibility-improving method is generally made up of 

two stages: (1) the generation of functionalized magnetic particles designed to adsorb water-borne 

metal ions or pollutants [36-40], and (2) the recovery of the absorbing magnetic particles by means 

of an external non-uniform magnetic field [41-48]. The main task has been the generation of highly 

multi-functionalized magnetic particles with the facility to adsorb specific heavy metal ions such as 

copper, lead, cadmium and mercury. However, after the absorption of the heavy metals or pollutants, 

an effective technique is then required for collecting the magnetic particles using a gradient magnetic 

field.  

Nowadays, material scientists are able to synthesize magnetic particles with various 

magnetic properties and various geometric shapes such as rod-like [49-55], disk-like [56-60], 

cube-like [61-66] and peanut-like particles [62, 67-69]. In the cases of magnetite Fe3O4, maghemite 

γ-Fe2O3, or Barium ferrite BaFe12O19, particles, the particles have a significantly strong 

magnetization and they tend to aggregate and sediment quickly unless their surface is coated with a 

surfactant layer. Moreover, we can not easily obtain a stable suspension composed of these magnetic 

particles because it is difficult to re-disperse them in a solvent once they have aggregated together. In 

contrast, hematite α-Fe2O3 particles have a significantly weak magnetization which may be of merit 

for obtaining a stable suspension without the need for a surfactant treatment. For the case of a coarse 

hematite particle in the size range of several hundred nanometers to one micrometer, the magnetic 

interaction acting between particles is no longer negligible, and thus these coarse hematite particles 

tend to sediment and to form aggregate structures on the sedimentation surface. Hence, research has 

focused on a suspension composed of coarse hematite particles from the viewpoint of developing a 

surface modification technology. The objective of these studies has been to clarify the orientational 

characteristics and aggregation phenomena of magnetic particles on the material surface [63, 65, 
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70-72].   

It is known that ferromagnetic particles and hematite particles have different 

magnetization properties. For the case of a magnetic rod-like particle, it is known that the 

ferromagnetic rod-like particles [53] are magnetized in the major axis direction of the particle, 

whereas the rod-like hematite particles [54, 55] are weakly magnetized in the minor axis direction. 

For the case of a cubic hematite particle, it was known that the magnetic dipole moment of the 

particle tends to orient in the diagonal direction of the cube, however, from a recent experimental 

study, it has been clarified that the magnetic moment is not fully oriented in a diagonal direction 

[66].  

There are a variety of computational micro-analysis methods [73-85] for particle 

suspensions, such as Monte Carlo (MC), molecular dynamics (MD), Brownian dynamics (BD), 

lattice Boltzmann (LB), multi-particle collision dynamics (MPCD) and dissipative particle dynamics 

(DPD). The Monte Carlo method [73, 74] is a powerful technique for simulating particle ensembles 

in the situation of thermodynamic equilibrium, whereby the microscopic states of a system are 

generated according to stochastic theory using a series of random numbers. Moreover, this 

simulation method may be performed for a solid particle system even if the interaction between the 

steric or repulsive layers is not completely formulated. On the other hand, for non-equilibrium 

studies such as flow problems and the study of rheological properties, the Brownian dynamics 

method [77, 78] offers the simplest simulation technique, whereby particle motion is simulated 

according to the Langevin equation by which the Brownian motion is expressed through stochastic 

characteristics. Hence, this method requires knowledge of the particle friction or diffusion 

coefficients and the equation of the repulsive interaction between the steric layers. Moreover, the BD 

method may be desirable for the simulation of a dilute suspension of magnetic particles where the 

multi-body hydrodynamic interaction among particles may be neglected. In order to obtain more 

accurate simulation results, it may be required to employ a more advanced simulation approach such 

as LB [79-81], MPCD [82, 83] and DPD [84, 85]. These simulation methods are able to treat the 

hydrodynamic interaction because their methodology is to simultaneously solve for the particle 

motion and the ambient flow field. Many researchers have conducted simulation studies with respect 

to the behavior of magnetic particles by means of these simulation methods [79-85]. However, the 

focus has mainly been on a spherical magnetic particle dispersion, and therefore, it may be desirable 

to develop the LB, MPCD and DPD methods to accommodate a suspension composed of 

non-spherical particles such as the rod-like and cube-like particles. 

The Brownian dynamics method is considered to be a useful simulation tool for a 

suspension of axisymmetric particles such as the spherical, rod-like and disk-like particles. However, 

the Brownian dynamics method is not directly applicable to a suspension composed of 

non-axisymmetric particles where the relationship between the components of the friction or 
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diffusion tensor has not fully been clarified at the present, as in the case of cube-like particles. 

Many researchers have shown an active interest in the relationship between the 

magnetorheological properties of a suspension and the particle aggregates, where past studies 

[86-90] have mainly targeted a suspension composed of magnetic spherical particles. Since the 

employment of non-spherical particles is expected to yield a suspension that exhibits a larger 

magneto-rheological effect [91-94], further studies are necessary with regard to magnetic particles 

with a variety of geometrical shapes.  

From this background, several simulation and experimental studies [95-99] have been 

conducted by our research group in order to investigate the magnetorheological properties of a 

suspension of ferromagnetic or hematite rod-like particles. For example, in the case of a suspension 

of ferromagnetic rod-like particles that are magnetized in the major axis direction, it was clarified 

that an increase in the magnetic field strength induces a regime change from raft-like clusters to 

chain-like and wall-like clusters that lead to a significant increase in the net viscosity [95]. In 

contrast, a suspension composed of rod-like hematite particles that are magnetized normal to the 

particle axis direction, may exhibit a negative magnetorheological effect under certain conditions 

[96]. The appearance of this effect had been previously predicted from a theoretical analysis based 

on the orientational distribution function [99] and has been verified by an experimental study [97]. 

The magnetorheological effect is significantly dependent on the internal structure of the 

particle aggregates formed in the system, and since the geometrical shape of a magnetic particle has 

a significant influence on the formation of the aggregate structure, a suspension composed of cubic 

particles may be expected to exhibit relatively complex magnetorheological properties. Therefore, 

the purpose of the task here is to employ the Brownian dynamics method and develop a simulation 

for a cubic particle suspension in order to investigate the relationship between magnetorheological 

properties and aggregation phenomena. 

In Chapters 2 to 4, we will address a system in thermodynamic equilibrium and investigate 

the internal structure of the particle aggregates and regime change phenomena by means of 2D and 

3D Monte Carlo simulations. 

In Chapter 5, we will analyze the flow field around a cube via commercial software 

ANSYS CFX in order to elucidate the features of the resistance component matrices.  

In Chapter 6, we will propose a new repulsive layer model for evaluating the repulsive 

interaction due to the overlap of the steric layers and will verify the validity of this interaction model 

by performing 3D Brownian dynamics simulations for comparison with a corresponding Monte 

Carlo simulation.  

In Chapter 7, we will treat a suspension composed of cubic magnetic particles in the 

situation of a simple shear flow and investigate the relationship between the magnetorheological 

effects and the aggregate structures by means of Brownian dynamics simulations.  
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In Chapter 8, we will summarize the progress of the current study and will introduce a 

possible direction for the future research of cubic magnetic particle suspensions. 
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Chapter 2 Phase change phenomena of a cubic hematite particle suspension in a 

two-dimensional system from 2D Monte Carlo simulations 

 

2.1 Introduction 

Surface modification technology plays an important role for the development and synthesis of 

magnetic composite particles. Furthermore, depending on the synthesis method, effects such as 

particle diffusion and sedimentation phenomena in the gravitational field may affect the final quality 

of these functional particles. It is therefore required to develop a technology for controlling 

self-assembled layers, aggregate structures and the orientational characteristics of the magnetic 

particles deposited on a material surface after sedimentation by means of an external magnetic field. 

A variety of studies based on cubic hematite particles [1-6] have previously been conducted in order 

to develop a surface modification technology by evaluating the aggregate structures and order 

characteristics of particles on a material surface. It has been experimentally clarified that cubic 

hematite particles form large aggregate structures on the material surface in a face-to-face contact 

configuration that may transform due to the influence of an external magnetic field into chain-like 

clusters aligned in the field direction [1]. Simulation studies have also been conducted to investigate 

a phase change in the aggregate structures and the internal structure of the aggregates. Donaldson et 

al. [7] have investigated the most preferred particle configuration for clusters formed in a 

quasi-two-dimensional (quasi-2D) system. Linse [8] treated a dispersion composed of cubic hematite 

particles which have a full three-dimensional rotational ability in a quasi-2D system and clarified the 

relationship between cubic particle models with magnetic moments in three different directions and 

the aggregate structures. In these studies, they also investigated the dependence of the cluster 

formation on the geometrical shape of the magnetic particle by using a shape parameter whereby the 

particle shape can be described from a sphere into a cube. 

 In the present study, we consider a quasi-2D suspension composed of hematite cubic 

particles in thermodynamic equilibrium. Our particle model is a geometric cube under the 

assumption of a dominant gravitational force, therefore the particles are restricted to perform a 

translational motion with one face in contact with the material surface and a rotational motion about 

a line normal to the material surface. 2D Monte Carlo simulations have been performed in order to 

investigate the dependence of the aggregate structures on a variety of factors such as the magnetic 

particle-particle interaction strength, the magnetic particle-field interaction strength and the 

volumetric fraction of the particles. 
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2.2 Particle model 

As shown in Fig.2.1, the particle is modeled as a cube with a side length d and a magnetic dipole 

moment m at the center of the cube laying along a diagonal. This particle model may be regarded as 

a first approximation to the cubic hematite particles that are experimentally synthesized [1]. It is 

noted that the red-colored part of the cube indicates the positive direction of the magnetic moment 

and the blue-colored part indicates the negative direction of the magnetic moment. 

 In the present study, we consider the motion of cubic hematite particles in 

thermodynamic equilibrium at a material surface. The particles are assumed to move with the lower 

surface of each cubic particle in contact with the plane of the material surface. Therefore, we treat 

the two types of cubic particle that have the magnetic moment pointing either in an upward diagonal 

direction or in a downward diagonal direction relative to the material surface. In this Chapter, we 

focus on a particular situation where half the number of particles have the magnetic moment 

pointing in the upward direction and the other half point in the downward direction. In this situation, 

the arbitrary motion of a particle can be expressed as a combination of a translational motion parallel 

to the material surface and a rotational motion about a line normal to the material surface. Therefore, 

we do not consider a full three-dimensional rotational ability for the cubic particles. In Linse’s 

simulations noted above [8], it was assumed that the orientation of the cube has a full 

three-dimensional rotational ability. In contrast, we here consider the situation of a sufficiently 

strong gravitational field and therefore the cubic particles are not able to perform the most general 

three-dimensional rotational motion. 

In practice, in order to obtain a stable particle suspension, particles dispersed in a base 

liquid are generally covered by a repulsive layer such as a steric or an electric double layer.

 However, we here employ a solid particle model without a repulsive layer because the inte

raction energy due to the overlap of the repulsive layers has not currently been derived in 

mathematical terms for the case of two cubic particles. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Cubic particle model with two types of magnetic moment direction:(a) an upward diagonal 

direction and (b) a downward diagonal direction relative to the bottom or material plane. 

a b 
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In our Monte Carlo simulation, an external magnetic field is applied along the material 

surface in the y-axis direction as H=Hh, where h=(0, 1, 0) is the unit vector denoting the field 

direction. If the position vector of particle i is denoted by ri and the magnetic moment of particle i is 

denoted by mi=mni, where ni is the unit vector describing the magnetic moment direction, then the 

magnetic particle-particle interaction uij
(m)

 and particle-field interaction ui
(H)

 are expressed as  
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in which, tij is the unit vector denoting the direction of particle i relative to particle j, expressed as tij 

= rij / rij, where rij =ri − rj and rij=|rij|. Moreover, λ and ξ are non-dimensional parameters and they are 

expressed as λ=μ0m
2
/(4πd

3
kT) and ξ=μ0mH/(kT), where k is the Boltzmann’s constant, T is the 

absolute temperature of the liquid and μ0 is the permeability of free space. Two non-dimensional 

parameters λ and ξ represent the strengths of magnetic particle-particle and particle-field interactions 

relative to the thermal energy, respectively.  

 The cubic particle has a characteristic geometry in that it is composed of six plane surfaces 

and, in the situation of the magnetic particle-particle interaction strength being a dominant effect, 

this feature makes two cubes more likely to be in face-to-face contact. Hence, we now discuss the 

characteristics of the magnetic interaction potential with consideration of this preferred face-to-face 

configuration. Figure 2.2 shows a set of eleven typical configurations representing the location and 

orientation for two cubic particles. Figure 2.3 shows the potential energy for each case of the above 

eleven configurations, where the values of mU
~

=uij
(m)

/(kTλ) are shown as the ordinate. It is seen from 

Figs. 2.2 and 2.3 that the case e2 gives rise to the minimum energy value −1.3333 and the case e1 

and d1 yield second and third minimum energy values. In the case of no applied magnetic field, 

configuration e2, e1 and d1 are the first, second and third preferred low energy configuration, 

respectively. In the situation of an applied magnetic field, the configuration e1 and d1 are expected 

to be the first and second preferred, respectively, since the magnetic moments of particles are 

restricted in the magnetic field y-axis direction.  

 For a 4-particle system, we may presume from the above results regarding the interaction 

energies that the configurations shown in Figs. 2.4(a) and 2.4(b) are the most preferred configuration 

for the cases of a strong external magnetic field and no external magnetic field, respectively. Large 

clusters in a multi-particle suspension may be formed by the combination and expansion of these 

basic cluster units. 
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Fig. 2.2 Typical configuration of location and orientation for two cubic particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Interaction energies for different particle configurations.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 The most preferred configuration for a 4-particle system: (a) in the case of a strong external 

magnetic field case and (b) in the case of no external magnetic field case. 

a b 
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2.3 Monte Carlo simulation 

We employ the Monte Carlo simulation method in order to investigate the aggregate structures of 

cubic hematite particles in thermodynamic equilibrium. In the present system, the number of cubic 

particles N, the volume of the system V, and the system temperature T are prescribed and constant in 

the simulation. Therefore, we adopt the NVT Monte Carlo method or the canonical ensemble Monte 

Carlo method [9], for which we evaluate the total system potential energy U which is the sum of the 

particle-particle uij
(m)

 and the particle-field ui
(H)

 interaction energies.  
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 This total potential energy U is used in the assessment procedure regarding the acceptance 

or rejection of a new position or a new orientation of a particle. 

 In a strongly-interacting system where particle aggregation is to be expected, we cannot 

capture physically reasonable aggregate structures from employing the ordinary Monte Carlo 

method. This is because, due to the energy considerations of the Monte Carlo methodology, a single 

constituent particle cannot dissociate from a cluster and thus be free to join a growing cluster. This 

implies that the convergence to an equilibrium state is prohibitively slow with ordinary MC 

simulations. From this background, the cluster-moving Monte Carlo method [10, 11] is seen to be a 

powerful technique in order to overcome this difficulty and obtain physically reasonable aggregate 

structures. In this method, clusters formed during the process of the simulation are regarded as a 

unitary particle and they are moved according to the usual Metropolis assessment procedure. 

Referring to Satoh’s study [11], we have attempted to analyze the cluster formation in the system and 

then to move these clusters every 20 MC steps. In the present study, the constituent particles that 

make up clusters are only able to perform translational and rotational motion in a two-dimensional 

plane. However, clusters are only able to perform translational motion because the rotational 

movement of clusters is likely to cause particle overlap that is not physically reasonable. 

 

2.4 Quantitative evaluation 

2.4.1 Radial distribution function 

The radial distribution function g(r) is used to quantitatively describe the internal structure of 

aggregates. If a finite small area at distance r from an arbitrary particle is denoted by ΔS(r)=2πrΔr 

and the number of particles existing in this area is denoted by ΔNi(r), then the radial distribution 

function g(r) is expressed as [10]  
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in which n0 is the particle number density and N is the number of particles.   

 

2.4.2 Order parameters  

In order to obtain quantitative characteristics for the configurations of cubic particle aggregates, we 

address the following order parameters. We first address the order parameter of the magnetic 

moment, S1
(m)

:  
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in which P2(－) is the second Legendre polynomial, expressed as P2(cosψij
(p)

) = (3cos
2
ψij

(p)－1)/2, 

ψij
(p)

 is the angle between the magnetic moment directions ni and nj of particles i and j,  is the 

ensemble average, the summation with respect to particles i and j treats all the pairs of particles, and 

Npair =N(N1)/2 is the number of these pairs of particles.  

If the magnetic particle-particle interaction strength λ is sufficiently large, the cluster units 

shown in Fig. 2.4 are expected to be formed in the system, as already discussed. In order to 

characterize this type of cluster unit in an appropriate manner, we consider the projection of the 

magnetic moments on the bottom or material surface. The notation in̂  and jn̂ are employed for the 

unit projection vectors of particles i and j, respectively, and )(n
ij is used for the angle between them. 

If the cluster units shown in Fig. 2.4 are predominantly formed in the system, then the value of 

)4cos( )(n

ij should give rise to unity. Hence, we address the second-order parameter S2
(m)

. 
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Moreover, we also focus on a third-order parameter in order to evaluate the alignment of 

the magnetic moments to an external magnetic field direction. This order parameter Sny is defined as  
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in which )ˆ(2 hn iP is the second Legendre polynomial, expressed as 2/)1)ˆ(cos3()ˆ( 2
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2.5 Parameters for simulations 

Unless specifically mentioned, the present simulation results were obtained by employing the 

following parameter values in performing the simulations. The volumetric fraction of particles V, is 

set as V=0.1, and the number of particles N is N=400. The non-dimensional parameters for the 

strength of the magnetic particle-particle interaction λ and particle-field interaction ξ are addressed in 

the wide range of values of λ=0~10 and ξ=0~20. Since we here treat a non-dense suspension, the 

phenomena of the crystallization and the multi-layers of cubic particles [3, 5, 12, 13] are not 

addressed. We focus on a particular situation where half of the total number of particles has a 

magnetic moment in the upward diagonal direction whilst the remainder has a magnetic moment in 

the downward diagonal direction. The cubic particles with up and down magnetic moment directions 

were initially located at random sites in the system and the external magnetic field is applied along 

the material surface in the y-axis direction. Moreover, in order to treat the boundary surfaces of the 

simulation area we employ periodic boundary conditions in the x-axis and y-axis directions. The 

cutoff distance rcoff for the evaluation of interaction energies is set as rcoff
*
 =rcoff /d=10, and the 

surface-to-surface criterion distance rclstr for the assessment of the cluster formation is set at rclstr
*
 = 

rclstr/d=0.1. As previously mentioned in section 2.3, the cluster-moving procedure was carried out 

every 20 MC steps [10, 11]. The maximum random translational distance ΔrMC and rotation angle Δ 

MC for Monte Carlo procedures are adopted as ΔrMC=0.1d and ΔMC=(2/180)π, respectively. The 

total MC steps Nsmplmx are taken as Nsmplmx=5,000,000 and the final 80% of the generated data were 

used for the date averaging procedure. 
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2.6 Results and discussion  

2.6.1 Influence of the magnetic particle-particle interaction strength 

First, we discuss the dependence of the aggregate regime of cubic particles on the magnetic 

particle-particle interaction strength λ for the case of no applied magnetic field ξ=0. The snapshots 

shown in Figure 2.5 show a qualitative difference between the internal structure of the particle 

aggregates for the three cases of magnetic particle-particle interaction strength λ=4, λ=7 and λ=10. In 

the case of a small magnetic particle-particle interaction λ=4, shown in Fig. 2.5(a), the particles do 

not aggregate to form specific clusters and magnetic moments of each particle do not tend to incline 

in a specific direction because the effect of thermal motion is more dominant. In the case of a 

relatively large magnetic particle-particle interaction strength λ=7, shown in Fig. 2.5(b), it is seen 

that small clusters are formed in the system and the basic configuration e2 shown in Fig. 2.2 and the 

cluster unit shown in Fig. 2.4(b) are clearly observed. As the magnetic particle-particle interaction 

strength is further increased to λ＝10, shown in Fig. 2.5(c), large aggregate structures are formed in 

the system and as already mentioned in Section 2.2, it is evident that these large aggregates are 

formed from a combination of the basic cluster unit shown in Fig. 2.4(b). These aggregates, being 

different from the chain-like clusters, are designated as closely-packed clusters. The internal 

structure of these closely-packed clusters is in good agreement with those in an 8-particle system 

that were obtained by molecular dynamics simulation [7]. Although the formation of loop-like 

clusters is mentioned for a round-edged cubic system in no applied magnetic field [8], the present 

sharp-edged cubic system does not exhibit such clear loop-like or necklace-like clusters that are 

usually observed in a suspension of magnetic spherical particles [14-17].    

The internal structure of the above-mentioned clusters can be quantitatively evaluated by 

the radial distribution function. Figure 2.6 shows results of the radial distribution function for the 

three cases of the magnetic particle-particle interaction strength λ=4, λ=7 and λ=10. For the case of 

λ=4, the curve exhibits a gas-like distribution because specific clusters are not formed in the system. 

That is, it shows a value of almost unity except for the region where neighboring particles contact in 

a face-to-face manner. For the case of the intermediary magnetic particle-particle interaction strength 

λ=7, the first peak is more pronounced and a second lower peak can be seen. This characteristic 

implies that small clusters are formed in the system while the second peak dispersed around the 

distance r
*≃2 implies that the third particle in these clusters is not attached in a perfect face-to-face 

contact. For the case of a strong magnetic particle-particle interaction strength λ=10, the curve shows 

a liquid-like distribution with a complex tail exhibiting an oscillatory nature. The reason why there 

are several high peaks in the radial distribution function for the case of λ=10 may be explained by 

using the diagram shown in Fig. 2.7. The first peak corresponds to the configuration r1 shown in Fig. 

2.7, where the second particle is located at the shorter distance of r
*≃1 in a perfect face-to-face 

configuration. The second peak corresponds to the configuration r2 in Fig. 2.7, where the second 
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particle is located at a distance of r
*≃1.4 diagonally from the first particle. Similarly, the third and 

fourth peaks of the radial distribution function correspond to the configurations r3 and r4 in Fig. 2.7, 

and are located respectively at distances r
*≃2.0 and r

*≃2.2. From these characteristics, we may 

understand the second peak at r
*≃1.4 and forth peak at r

*≃2.2 suggest the expansion of 

closely-packed structures. However, it is seen from Fig.2.6 that these peaks do not appear at their 

exact position shown in Fig. 2.8. This is because the random motion of the cubic particles induces an 

instability in the regular face-to-face configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Dependence of the aggregate structures on the magnetic particle-particle interaction 

strengths λ (a) λ=4, (b) λ=7 and (c) λ=10 in the absence of an applied magnetic field ξ=0. 
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Fig. 2.6 Radial distribution function g(r
*
) for the three cases of the magnetic particle-particle 

interaction strength, λ=4, λ=7 and λ=10 in the absence of an applied magnetic field ξ=0. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 The relationship between each peak in the radial distribution function and the configuration 

of cubic particles in a cluster. 

 

We now employ the order parameter S2
(m)

 ,defined in Eq.(2.6), in order to discuss the 

regime change whereby an internal structure with no cluster formation is transformed into clusters 

with a closely-packed structure. Figure 2.8 shows the dependence of the order parameter S2
(m)

 on the 

magnetic particle-particle interaction strength λ for no applied magnetic field ξ=0. In the range of 

relatively low interaction strength λ≲5, the value of the order parameter tends to almost zero and 

clearly implies, as already discussed, that the particles do not aggregate to form clusters. The curve 

slowly starts to increase from λ≃6 and further steeply increases between λ≃7.5 and λ≃8.5. This 

implies the occurrence of a regime change in internal structure during the increase in the value of the 

order parameter S2
(m)

, from a situation with no cluster formation to the formation of the large 

closely-packed structures shown in Fig. 2.5(b). 

From the above discussion, we understand that an increase in the magnetic particle-particle 

interaction strength λ induces the formation of large closely-packed clusters in the situation of no 

applied magnetic field. 
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Fig. 2.8 Dependence of the order parameter of the magnetic moment S2
(m) 

on the magnetic 

particle-particle interaction strength λ for no applied magnetic field ξ=0. 

 

2.6.2 Influence of the magnetic particle-field interaction strength 

We now discuss the dependence of the internal structure of the particle aggregates on the external 

magnetic particle-field interaction strength ξ. Figure 2.9 shows results from snapshots for ξ=5 shown 

in Fig. 2.9(a) and ξ=20 shown in Fig. 2.9(b) for the relatively weak magnetic particle-particle 

interaction strength λ=7. For the case of relatively weak magnetic field ξ=5, it is seen that thin 

chain-like clusters are formed in the system along the magnetic field direction. As the magnetic 

particle-field interaction strength is increased to ξ=20, these thin chain-like clusters grow thicker 

along the field direction and as expected from section 2.2, the internal structure of these thick 

clusters is composed of the basic structure unit shown in Fig. 2.4(a). However, it is seen from the 

magnified pictures in Fig. 2.9(b) that the internal structure is relatively loose because the magnetic 

particle-particle interaction strength λ=7 is not sufficiently large for stable cluster formation. In the 

situation of a larger magnetic particle-field interaction strength, the magnetic moments of each 

particle are strongly restricted to the magnetic field direction, and therefore the particle configuration 

e1 shown in Fig. 2.2 is expected to appear more frequently in the case of a sufficiently large 

magnetic particle-particle interaction strength. Hence, we may presume that the insufficient magnetic 

particle-particle interaction of λ=7 induces the looser internal structure in the thick chain-like 

clusters shown in Fig. 2.9(b) and that was also predicted for a system of the round-edge cubes [8]. 

Figure 2.10 shows the dependence of the radial distribution function on the magnetic particle-field 

interaction strength. It is seen from Fig. 2.10 that the distribution exhibits clearer and higher second 

and third peaks with increasing value of the magnetic particle-field interaction strength. This 

quantitatively implies that thicker chain-like clusters are formed in the system with increasing 

magnetic particle-field interaction strength.  
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Fig. 2.9 Enhancement of thick chain-like clusters along the field direction by the external field 

strengths (a)ξ=5 and (b)ξ=20 for the magnetic particle-particle interaction strength λ=7. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 Dependence of the radial distribution function g(r
*
) on the magnetic particle-field 

interaction strength for the three cases of ξ=5, ξ=10 and ξ=20 for the magnetic particle-particle 

interaction strength λ=7. 

 

 

Figure 2.11 shows results from snapshots for the magnetic particle-field interaction 

strength ξ=3 shown in Fig. 2.11(a) and ξ=5 shown in Fig. 2.11(b) for the larger magnetic 

particle-particle interaction strength λ=10. It is clearly seen from Fig. 2.11 that the closely-packed 

structures shown in Fig. 2.5(c) are transformed into elongated thick chain-like clusters with 

increasing magnetic particle-field interaction strength. That is, an increase in the magnetic 

particle-field interaction strength induces a regime change from closely-packed clusters based on the 

cluster unit shown in Fig. 2.4(b) into a regime of thick chain-like clusters based on the cluster unit 

a b 
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shown in Fig. 2.4(a). The difference in the internal structure of particle aggregates can be recognized 

by addressing the radial distribution function g(r
*
) shown in Fig. 2.12. Figure 2.12 shows the 

dependence of the radial distribution function on the particle distance r
* 

for the magnetic 

particle-particle interaction strength λ=10. The curves for external particle-field interaction strengths 

ξ=5 and ξ=7 show characteristics slightly different from that for the case of ξ=3 in that the second, 

third and fourth peaks are smoother, suggesting that the regime change of the internal structure arises 

in a small range between ξ=3 and ξ=7. It is seen that the curve for ξ=3 in Fig. 2.12 is good agreement 

with that for λ=10 and ξ=0 in Fig. 2.6, although the peaks tend to be higher because of the 

enhancement of the longer clusters due to the influence of an external magnetic field. Similar to the 

case with no applied magnetic field ξ=0, there is a peak at r
*≃1.5 in the curves of the radial 

distribution function g(r
*
) in Fig. 2.12, which implies that the internal structure of thick chain-like 

clusters is a combination of the basic structure shown in Fig. 2.4(a), and this internal structure may 

be relatively stable.  

From the above results regarding the snapshot and radial distribution function, we 

conclude that an applied magnetic field functions to significantly enhance the formation of elongated 

closely-packed clusters along the magnetic field direction if the magnetic particle-particle interaction 

λ is sufficiently large, but does not strongly regularize the internal structure of these clusters. An 

increase in the magnetic particle-field interaction strength ξ induces the formation of elongated 

clusters along the magnetic field direction even if the magnetic particle-particle interaction strength 

is not that strong, i.e. λ=7.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 Enhancement of thick chain-like clusters along the field direction by the external field 

interaction strengths (a) ξ=3 and (b) ξ=5 for the magnetic particle-particle interaction strength λ=10. 

a b 
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Fig. 2.12 Dependence of the radial distribution function g(r
*
) on the magnetic particle-field 

interaction strength for the three cases of ξ=3, ξ=5 and ξ=7 for the magnetic particle-particle 

interaction strength λ=10. 

 

 

Figure 2.13 shows the dependence of the order parameter of the magnetic moment S1
(m)

 on 

the magnetic particle-field interaction strength ξ for the cases of magnetic particle-particle 

interaction strengths λ=0, λ=7 and λ=10. It is noted that the order parameter S1
(m) 

describes the degree 

of order regarding the correlation of the direction ni and nj of the magnetic moments. Hence, the 

value of S1
(m)

 approaches the theoretical value S1
(m)

 =0.33 when all the projection vectors of the 

magnetic moments incline in the field direction. For the case of λ=0, the value of the order parameter 

monotonically increases with increasing magnetic field because the magnetic moments of each 

particle are free to incline in the field direction. For the case of a relatively large magnetic 

particle-particle interaction strength λ=7, the curve significantly increases in comparison with the 

case λ=0, and this deviation becomes larger with increased magnetic particle-field interaction 

strength ξ. This is because an increase in the magnetic particle-field interaction strength induces the 

formation of elongated clusters, as already addressed. For the case of a strong magnetic 

particle-particle interaction strength λ=10, it is seen that the curve exhibits a significantly different 

characteristic than that shown by the previous cases. That is, in the range of smaller magnetic 

particle-field interaction strength ξ≲3, the order parameter shows almost zero value until there is a 

significant increase between ξ≃4 and ξ≃7 that tends to converge to a saturated value of S1
(m)≃0.33 

around ξ≃10. This steep increase clearly suggests the occurrence of the structural regime change in 

the particle aggregates from closely-packed clusters into elongated thick chain-like clusters along the 

magnetic field direction. The almost zero value of S1
(m)

 in the range of lower magnetic particle-field 

interaction strengths results from a cancellation effect arising from the basic structure in Fig. 4(b).  

In the case of a larger magnetic particle-field interaction strength ξ≳7, elongated chain-like 
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clusters are formed in the system and the magnetic particle-particle interaction in the clusters induces 

an enhancement of the alignment of the magnetic moments to the magnetic field direction that leads 

to the larger value of S1
(m)

.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13 Dependence of the order parameter of the magnetic moment S1
(m) 

on the magnetic 

particle-field interaction strength for three cases of the magnetic particle-particle interaction strength, 

λ=0, λ=7 and λ=10. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 Dependence of the order parameter Sny, regarding the alignment of the magnetic moments 

with the applied magnetic field direction, on the magnetic particle-field interaction strength ξ for the 

four cases of the magnetic particle-particle interaction strength, λ=0, λ=5, λ=7 and λ=10.  
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The occurrence of a regime change is also supported by the results from the order 

parameter Sny regarding the alignment of the magnetic moments with the applied magnetic field 

direction shown in Figure 2.14. The non-dimensional parameter ξ denotes the magnetic particle-field 

interaction strength relative to the effect of the thermal energy and the value of ξ=10 implies that the 

effect of the magnetic particle-field interaction is significantly more dominant than the influence of 

the random thermal motion. In a manner similar to the previous case, the curve for λ=10 exhibits 

completely different characteristics in a quantitative manner from those for the case of λ=0, λ=5 and 

λ=7. That is, the curve for λ=10 steeply increases and converges to almost unity at ξ=10, but the 

curves for λ=0, 5 and 7 continue to gradually increase with increasing magnetic particle-field 

interaction strength. These characteristics quantitatively also suggest a difference in the features of 

the internal structure of the aggregates. In the case of λ=10 shown in Fig. 2.11, long and stable thick 

chain-like clusters are formed in contrast to the single-moving particles for λ=0 and short clusters 

with a loose internal structure that are formed for the case λ=5. From the characteristics of the order 

parameter Sny in Fig. 2.14, it is seen that the magnetic particle-particle interaction significantly 

enhances the alignment of the magnetic moments toward the magnetic field direction. Relative to 

other order parameters, we understand that the order parameter Sny can reflect both the difference in 

the characteristics of the alignment of the magnetic moments and the difference in the internal 

structure of particle aggregates more sensitively and clearly. 

 

2.6.3 Influence of the volumetric fraction of particles 

Finally, we discuss the influence of the volumetric fraction V of cubic particles on the cluster 

formation. Figure 2.15 shows snapshots for only a small part of the whole system for the case of a 

large magnetic particle-particle interaction strength λ=10 and no applied magnetic field ξ=0. In the 

case of V=0.01 shown in Fig. 2.15(a), there is a small closely-packed cluster composed of 

approximately only 16 particles. In contrast, for the case of V=0.2 shown in Fig. 2.15(b), larger 

closely-packed clusters are formed throughout the system and they are clearly seen to be composed 

of the basic cluster unit shown in Fig. 2.4(b). It is understood from these snapshots that larger 

closely-packed clusters are formed with increasing volumetric fraction and this is because a small 

volumetric fraction scarcely provides an opportunity for the smaller cluster units to approach each 

other.  

Lastly, we discuss the dependence of the internal structure of the clusters on the volumetric 

fraction of particles, using the radial distribution function g(r
*
) where Figure 2.16 shows results for 

the case of a large magnetic particle-particle interaction strength λ=10 and no applied magnetic field 

ξ=0. It is seen from Fig. 2.16 that the position of each peak does not significantly change although 

the height of each peak slightly decreases with increasing volumetric fraction. This clearly implies 

that the essence of the internal cluster structure is not significantly dependent on the volumetric 
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fraction of particles. That is, a regime change in the internal structure of aggregates does not occur 

due to the influence of the volumetric fraction of particles. The reason why there is a decrease in the 

height of the peaks with increasing volumetric fraction may be explained as follows. In the situation 

of a relatively large volumetric fraction V=0.2, a large main cluster is formed from a combination of 

medium-sized clusters that incline in slightly different directions to each other. This combination of 

the different directional characteristics of the medium-size clusters induces a decrease in the 

regularity of the larger cluster configuration and leads to a decrease in the height of the peaks of the 

radial distribution function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15 Dependence of the aggregate structures on the particle volumetric fraction (a) V=0.01 and 

(b) V=0.2 for the case of a large magnetic particle-particle interaction strength λ=10 and no applied 

magnetic field ξ=0. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.16 Dependence of the radial distribution function g(r
*
) on the particle volumetric fraction for 

the three cases of V=0.01, V=0.05 and V=0.2. 

a b 
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From the above characteristics exhibited by the aggregate structures, we may conclude that 

a large volumetric fraction of particles will significantly enhance the size of the clusters although it 

does not significantly influence the internal structure of the larger closely-packed clusters. 

 

2.7 Conclusion 

We have addressed a suspension composed of magnetic cubic particles in thermodynamic 

equilibrium by means of Monte Carlo simulations in order to investigate particle aggregate 

structures. From the viewpoint of developing a surface modification technology, we have focused on 

a quasi-2D system in thermodynamic equilibrium where an external magnetic field is applied in the 

plane of the material surface. In order to qualitatively and quantitatively discuss the characterization 

of the internal structure of the aggregates, we have addressed the simulation snapshots, a radial 

distribution function and system order parameters. We have considered the effects of the magnetic 

particle-particle interaction strength, the magnetic particle-field interaction strength and the 

volumetric fraction of particles for clarifying the characteristics of the regime changes that are 

dependent on these factors. If the magnetic particle-particle interaction strength is sufficiently large, 

the particles aggregate to form closely-packed clusters where the constituent particles are located 

with an almost perfect face-to-face contact. The regime change in the internal structure from a no 

cluster to a significant cluster formation is quantitatively evaluated by an order parameter, where the 

value of this order parameter steeply increases within a small range of the magnetic particle-particle 

interaction strength. As the magnetic particle-field interaction strength is increased, the 

closely-packed clusters are transformed into the chain-like clusters laying along the magnetic field 

direction. The chain-like clusters are formed in the system even if the magnetic particle-particle 

interaction strength is not relatively large and the effect of an external magnetic field functions to 

enhance a chain-like formation. This clearly implies that an applied magnetic field induces a 

transition in the aggregate structures of a magnetic cubic particle suspension. Larger closely-packed 

clusters are formed with increasing volumetric fraction because a larger volumetric fraction is able to 

provide a greater probability for the particles to approach each other. However, the internal structure 

of the closely-packed clusters is not significantly influenced by a change in the volumetric fraction.     
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Chapter 3 Dependence of a regime change on the composition ratio of cubic 

particles with different magnetic moment directions via 2D Monte Carlo 

simulations 

 

3.1 Introduction 

From the viewpoint of the development of a surface modification technology [1-3], in Chapter 2 we 

discussed the phase change in the aggregate structure of a suspension composed of cubic hematite 

particles on a material surface by means of 2D Monte Carlo simulations. We focused on a situation 

where half the number of particles have a magnetic moment pointing in the upward direction and the 

remainder have a magnetic moment pointing in the downward diagonal direction relative to the 

material surface. This assumption of half upward and half downward seems to be quite reasonable in 

the situation where the effect of the gravitational field is more dominant than thermal motion and an 

external magnetic field is applied in the plane of the material surface. If the external magnetic field is 

applied in the direction of the gravitational field, normal to the material surface, this assumption may 

not be acceptable. If we treat a suspension composed of cubic particles with a limited rotational 

ability as in Chapter 2, we should take into account of the ratio of the number of particles with 

upward and downward magnetic moments. In contrast, if the cubic particles have the full 

three-dimensional rotational ability, as in Linse’s study [4], it is not necessary to consider the 

composition ratio. In Linse’s study [4], the dependence of the cluster formation on the variation of 

geometrical shape of the magnetic particle, from a spherical to a cube-like shape, was investigated 

with a full three-dimensional rotational ability. Similarly, the effect of the geometrical shape on the 

aggregate structures has been investigated for dipolar superballs [5, 6]. 

From this background, we here expand the previous study of Chapter 2 to a variety of 

composition ratios for the number of cubic particles with the two different magnetic moment 

directions. As will be seen from the following results and discussion, the composition of the moment 

ratio of these cubic particles has a significant effect on the structural regime of the aggregates. As in 

the previous study, the particle model is a geometric cube and under the assumption of a dominant 

gravitational force whereby the particles perform a translational motion with one face in contact with 

the material surface and the rotational motion is restricted about a line normal to the plane of the 

material surface.  

In Chapter 3, we consider a quasi-two dimensional system composed of cubic hematite 

particles in thermodynamic equilibrium. Monte Carlo simulations have been performed in order to 

elucidate the dependence of particle aggregates on the magnetic moment composition ratio, 

magnetic particle-particle interaction strength and magnetic particle-field interaction strength. 
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3.2 Model of magnetic cubic particles 

As in the previous study of Chapter 2, we treat the two types of cubic particles with the magnetic 

moment pointing in the upward or downward diagonal direction relative to the bottom or material 

surface. As shown in Fig. 3.1, the particles are idealized with the geometry of a cube of side length d 

and with a magnetic dipole moment m=mn at the center of the cube pointing in a diagonal direction 

which is a typical characteristic of cube-like hematite particles [7, 8]. In contrast to our study in 

Chapter 2, we here consider a variety of situations of ensemble ratios for the number of particles 

with different magnetic moment directions relative to the material surface. The composition ratio of 

the system regarding the number of the two types of particles is denoted by Rupdwn=Nup/Ndwn, where 

Nup is the number of upward and Ndwn is the number of downward pointing magnetic moments 

relative to the material surface. From our results we will discuss the dependence of the internal 

structure of particle aggregates on the composition ratio Rupdwn. In order to visually discern the 

difference of the composition ratio Rupdwn in the figures and the snapshots shown below, the cubes 

with a magnetic moment in the upward diagonal direction are shown red whilst cubes with a 

magnetic moment in the downward diagonal direction are shown blue. 

The absolute orthogonal coordinate system xyz is set with the z-axis in the positive 

direction normal to the bottom or material surface. Employing this coordinate system, an external 

magnetic field H is expressed as H=Hh=(0, H, 0), where h is the unit vector denoting the field 

direction. If the position vector and the magnetic moment of particle i are denoted by ri and mi, 

respectively, then the magnetic particle-particle interaction energy uij
(m)

 and magnetic particle-field 

interaction energy ui
(H)

 are expressed as 
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in which, ni is the unit vector of the magnetic moment direction, tij is the unit vector denoting the 

direction of particle i relative to particle j, expressed as tij=rij/rij, where rij =ri−rj is the relative 

position of particle i to particle j, and rij=|rij|. 

From the non-dimensionalization procedure, it is seen that the present phenomenon is 

governed by two non-dimensional parameters, λ=μ0m
2
/ (4πd

3
kT) and ξ=μ0mH/(kT), which imply the 

strengths relative to the thermal energy of the magnetic particle-particle interaction and magnetic 

particle-field interaction, respectively. In these parameters, μ0 is the permeability of free space, k is 

Boltzmann’s constant, and T is the absolute temperature of a suspension. 

From the perspective of a surface modification technology, it may be desirable to take into 

account surface forces. However, in the present study, we concentrate on the magnetic 
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particle-particle interaction λ and the magnetic particle-field interaction ξ, since we regard this 

approach as a reasonable first step to elucidate the behavior of the cubic hematite particles on a 

material surface. 

Figure 3.2 shows part of the results from the analysis of the interaction energy 

)4//(~ 32
0

)()( dmuu
m

ij
m

ij   which has already been discussed in Chapter 2. The Figs. 3.2(a) and 3.2(c) 

are for the case of two particles with the magnetic moment of one pointing in the upward and the 

other in the downward diagonal direction relative to the material surface, referred to as the upward 

and the downward particle from now on and the Figs. 3.2(b) and 3.2 (d) are for the case of two 

downward particles. The Figs. 3.2(a) and 3.2(b) show a difference in the interaction energy between 

two typical particle configurations which give rise to a minimum interaction energy for a 

two-particle system. The particle configuration shown in Fig. 3.2(a), gives rise to a relatively low 

interaction energy )(~ m
iju =−1.333 compared to the value )(~ m

iju =−0.666 shown for the case of 

configuration Fig. 3.2(b). Similarly, the configurations Fig. 3.2(c) yield the interaction energies 

)(~ m
iju = −0.666 or −0.5892, whereas the configuration in Fig. 2(d) leads to the larger energy 

)(~ m
iju =−0.3535. 

 

 

 

 

 

 

 

 

Fig. 3.1 Particle model with two types of magnetic moment direction: (a) upward diagonal direction 

and (b) downward diagonal direction relative to the bottom plane or material surface. 

 

 

 

 

 

 

 

 

 

Fig.3.2 Preferred configuration in (a) main clusters and (b) sub-clusters for no external magnetic 

field, and (c) main clusters and (d) sub-clusters for a strong magnetic field. 

a b c d 

a b 
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3.3 Order parameters 

As in Chapter 2, we focus on the following order parameter in order to quantitatively discuss the 

configuration features of the aggregates.  
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where Npair =N(N1)/2 is the number of pairs of particles, in̂  and jn̂  are the unit projection vectors 

of the magnetic moment of particle i and j, respectively and )(n
ij is the angle between the unit 

vectors in̂  and jn̂ . It is noted that the value of order parameter S2
(m)

 approaches unity as 

closely-packed aggregates are formed in the system.  

 Moreover, we also employ an order parameter Sny regarding the alignment of the magnetic 

moments with the applied magnetic field direction. 
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in which )ˆ(2 hn iP is the second Legendre polynomial, expressed as )ˆ(2 hn iP =(3cos
2

)ˆ( hn i −1)/2. 

We have already understood from Chapter 2 that the order parameter Sny can reflect the difference in 

the features of the alignment of the magnetic moments sensitively and clearly.  

 

3.4 Parameters for simulations 

Unless specifically noted, the present results were obtained by adopting the following parameter 

values. The volumetric fraction of magnetic cubic particles is set to V =0.1, and the number of 

particles N=400. The non-dimensional parameters for the magnetic particle-particle interaction 

strength λ and the magnetic particle-field interaction strength ξ are addressed in a wide range of 

values with λ=0~10 and ξ=0~20. In Chapter 2, we focused on a particular case where half of the total 

number of particle moments were in the upward whilst the remainder were in the downward 

diagonal direction. In the present study we wish to discuss the effect of the composition ratio 

Rupdwn(=Nup/Ndwn) on the aggregate structures therefore we treat several more general cases where the 

ensemble is characterized by the composition ratio taken over the wide range of values Rupdwn=1/4, 

1/3, 1/2 and 1. We employed a periodic boundary condition for treatment at the boundary surfaces of 

the simulation box both in the x-direction and y-direction. The cubic particles are initially located 

randomly in the system. The cutoff distance rcoff is set as rcoff =10d and the surface-to-surface 

criterion distance rclstr is set as rclstr=0.1d. The total MC steps is taken as Ntimemx = 1,000,000 and the 
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final 80% of the data were used for the data averaging procedures. The cluster-moving procedure 

was carried out every 20 Monte Carlo steps [9, 10]. In order to clarify the behavior of the cubic 

particles on a material surface in a variety of situations, we have employed a wide range of values 

for the non-dimensional parameters. In order to compare experimental results with results obtained 

from the present simulations, it is necessary to evaluate several non-dimensional parameters that 

relate to the experimental situations, for example, the liquid temperature and the dimensions of cubic 

particles. 

 

3.5 Results and discussion 

3.5.1 Dependence of the aggregate structures on the magnetic particle-particle 

interaction strength for no external magnetic field 

We discuss the influence of the composition ratio Rupdwn on the aggregate structures in the absence of 

an external magnetic field. The Fig. 3.3 and Fig. 3.4 show the aggregate structures for the cases of 

Rupdwn=1/2 and Rupdwn=1/4, respectively, where each figure has two snapshots for the magnetic 

particle-particle interaction strengths of (a) λ=7 and (b) λ=10.  

For the case of an insufficient magnetic particle-particle interaction strength λ=7, shown in 

Fig. 3.3(a), many small clusters are formed in the system although single particles still remain 

without aggregating to form specific clusters. This feature is not significantly different from that for 

the case of a smaller composition ratio Rupdwn = 1/4, shown in Fig. 3.4(a). The formation of small 

clusters shown in Figs. 3.3(a) and 3.4(a) is clearly due to the relatively weak magnetic 

particle-particle interaction strength of λ=7. These small clusters are made up of upward and 

downward particles, and the small clusters seen in the case of Rupdwn =1/2, shown in Fig. 3.3(a), are 

relatively larger than those seen in the case of Rupdwn =1/4, shown in Fig. 3.4(a).  

For the case of a large magnetic particle-particle interaction strength λ=10, it is seen from 

Figs. 3.3(b) and 3.4(b) that closely-packed clusters are formed in the system, although many single 

particles and several small clusters remain independent of the large closely-packed clusters. From a 

comparison between the snapshots of Figs. 3.3(b) and 3.4(b), the size of closely-packed clusters is 

seen to become smaller with a decreasing value of the composition ratio Rupdwn. As already discussed 

in Chapter 2, the closely-packed clusters shown in Figs. 3.3(b) and 3.4(b) are formed from the 

combination and expansion of the basic cluster unit shown in Fig. 3.2(a). Under conditions where the 

number of upward particles, Nup, is much smaller than the number of downward particles, Ndwn, there 

are almost no single upward particles remaining after the formation of a large closely-packed cluster 

that may further contribute to their growth. That is, in the vicinity around a closely-packed cluster it 

is mainly downward particles that remain and may possibly aggregate to form clusters. However, 

even for the case of λ=10, the interaction energy between downward particles is not sufficiently 

lower than thermal energy, therefore only short clusters are formed and they do not tend to grow into 
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larger clusters. The reason why a smaller closely-packed cluster is formed in the system with a 

decreasing composition ratio is that, after the reduction in the number of the single upward particles, 

the growth of a closely-packed cluster will finish much earlier. This may also explain why the 

number of single downward particles around a closely-packed cluster becomes much larger as the 

composition ratio is decreased.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Dependence of the aggregate structures on the magnetic particle-particle interaction strength 

(a) λ=7 and (b) λ=10 for the composition rate of Rupdwn=1/2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Dependence of the aggregate structures on the magnetic particle-particle interaction strength 

(a) λ=7 and (b) λ=10 for the composition rate of Rupdwn=1/4. 

a b 

a b 
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 These characteristics are supported by results of the following cluster size distribution 

function. Figures 3.5(a) and 3.5(b) show results of the cluster size distribution for the magnetic 

particle-particle interaction strengths λ=7 and λ=10, respectively, for various cases of the 

composition ratio, Rupdwn= 1, 1/2, 1/3 and 1/4, where the parameter s implies the number of particles 

that make up each cluster. In the case of λ=7, it is seen from Fig. 3.5(a) that each curve shows large 

values in the region of low values of s/N, which quantitatively implies that the particle system is 

composed of single particles and small clusters, as shown in Figs. 3.3(a) and 3.4(a). Since large 

aggregate structures are not formed in the situation of the relatively weak magnetic particle-particle 

interaction strength of λ=7, the curves are independent of the moment composition ratio. In contrast, 

the curves shown in Fig. 3.5(b) for the case of λ=10 exhibit different characteristics that imply they 

are dependent on the value of the composition ratio Rupdwn. As the value of the composition ratio is 

increases, the peaks become higher and shift toward the larger values of s/N. This characteristic 

clearly implies that a larger composition ratio leads to the formation of larger closely-packed clusters 

as is seen from Figs. 3.3(b) and 3.4(b).  From these results, we conclude that a decrease in the 

composition ratio leads to the suppression of the growth of large closely-packed clusters. This 

suggests that the composition ratio may be used as a technique for controlling the cluster formation 

and the size of closely-packed clusters of cubic hematite particles on the material surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5 Dependence of the cluster size distribution on the composition ratio in the absence of 

external magnetic field, ξ=0, for the magnetic particle-particle interaction strengths (a) λ=7 and (b) 

λ=10. 

a 
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3.5.2 Dependence of the aggregate structures on the magnetic particle-field 

interaction strength 

In this section, we discuss the dependence of the internal structure of particle aggregates on the 

applied magnetic particle-field interaction strength ξ for several cases of the composition ratio. We 

here focus on the case of a low composition ratio Rupdwn = 1/4, which is expected to have a different 

characteristic from that for the case of a large composition ratio Rupdwn = 1, that was discussed in 

Chapter 2. Figure 3.6 shows the snapshots of particle aggregates for the relatively weak magnetic 

particle-particle interaction strength λ=7 and the low composition ratio Rupdwn = 1/4.  The snapshot 

for external magnetic particle-field interaction strength ξ=5 is shown in Fig. 3.6(a) and for strength 

ξ=20 is shown in Fig. 3.6(b).  

 For the case of Rupdwn = 1, shown in Fig. 2.9 in Chapter 2, a significant regime change in 

the internal structure from linear chain-like clusters into thick chain-like clusters arises due to the 

influence of the magnetic particle-field interaction. However, for the case of Rupdwn = 1/4, shown in 

Fig. 3.6, such a significant regime change does not appear and linear chain-like clusters and single 

particles still remain in the system. This is because there are not a sufficient number of the basic 

cluster units shown in Fig. 3.2(c) formed in the system for the case of a small composition ratio 

Rupdwn = 1/4. 

 

   

 

 

 

 

 

 

 

 

 

  

 

Fig. 3.6 Dependence of the aggregate structures on the magnetic particle-field interaction strength 

(a) ξ=5 and (b) ξ=20 for the composition rate of Rupdwn=1/4 and magnetic particle-particle interaction 

strength λ=7. 

a b 
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 These characteristics are supported by the features of the radial distribution function, 

shown in Fig.3.7 for the magnetic particle-particle interaction strength λ=7 for the magnetic 

particle-field interaction strengths (a) ξ=5 and (b) ξ=20. It is seen from Fig. 3.7(a) for ξ=5 that each 

curve shows similar characteristics and is almost independent of the value of the composition ratio. 

That is, in the situation of the weak applied magnetic particle-field interaction ξ=5, small linear 

chain-like clusters are formed in the system, independent of the composition ratio. In contrast, from 

Fig. 3.7(b) for ξ=20 it is seen that several peaks come to appear more significantly with increasing 

composition ratio. This quantitatively implies that the particles aggregate to form thick chain-like 

clusters as the value of composition ratio is increased.  

 From these results, we understand that an external magnetic field does not induce the 

regime change whereby linear chain-like clusters are transformed into thick chain-like clusters in the 

case of the smaller composition ratio. Hence, the composition ratio may be used for controlling the 

aggregate formation even in a strong magnetic field situation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Dependence of the radial distribution function on the composition ratio Rupdwn for the 

magnetic particle-particle interaction strength λ=7 for the magnetic particle-field interaction 

strengths (a) ξ=5 and (b) ξ=20. 

a 

b 
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 Figure 3.8 shows results of the snapshots of particle aggregates for values of the external 

magnetic particle-field interaction strength ξ=5 shown in Figs. 3.8(a) and ξ=20 shown in Figs. 3.8(b) 

for the strong magnetic particle-particle interaction strength λ=10 and the small composition ratio 

Rupdwn = 1/4. From a comparison with the snapshot for ξ=0 and λ=10, shown in Fig. 3.4(b), it is seen 

from Fig. 3.8 that the large closely-packed clusters are transformed into elongated thick chain-like 

structures along the magnetic field direction due to the influence of an external magnetic field. 

Moreover, as the magnetic particle-field interaction strength is increased from ξ=5 to ξ=20, it is seen 

that the two relatively small closely-packed clusters combine with each other to form the larger 

closely-packed cluster which is clearly shown in Fig. 3.8(b). After the combination, this 

closely-packed cluster cannot further grow since there are only downward particles remaining in the 

neighboring region. That is, the size of this closely-packed cluster does not change because there are 

almost no upward particles that would be required to contribute to the growth. In the case of Rupdwn 

=1, as already discussed in Chapter 2, many basic cluster units of the type shown in Fig. 3.2(c) are 

formed around the growing clusters and therefore thicker and larger chain-like clusters tend to be 

formed more strongly with increasing magnetic particle-field interaction strength. 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3.8 Dependence of the aggregate structures on the magnetic particle-field interaction strengths 

(a) ξ=5 and (b) ξ=20 for the composition rate of Rupdwn=1/4 and for the magnetic particle-particle 

interaction strength λ=10. 
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Figure 3.9 results the radial distribution function for the case of λ=10 and ξ=5. It is seen 

that there are high peaks at the positions of integer times the particle size, which implies the 

formation of stable and large clusters. Moreover, peaks at an intermediate position such as r
*≃1.4 

suggest the internal structure of the closely-packed clusters which are based on the combination of 

the basic cluster unit shown in Fig.3.2(c). As the value of the composition ratio is decreased, these 

peaks become lower, which implies that the size of elongated closely-packed clusters becomes 

smaller. From these characteristics, we understand that the composition ratio may control the size of 

elongated closely-packed clusters even in the situation of a strong magnetic field. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Dependence of the radial distribution function on the composition ratio Rupdwn for the 

magnetic particle-particle interaction strength λ=10 and the magnetic particle-field interaction 

strength ξ=5. 
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3.5.3 Main and sub-clusters in the aggregate structures 

In this section, we discuss the internal structure of the elongated closely-packed clusters (referred to 

as main clusters) and the other types of clusters (referred to as sub-clusters) in more detail. Figures 

3.10(a) and 3.10(b) show a main cluster and a sub-cluster that may be observed in the snapshot 

shown in Fig. 3.8(a). It is clearly seen from Fig. 3.10(a) that the main cluster is composed of both 

upward and downward particles and the internal structure is based on the basic cluster unit shown in 

Fig. 3.2(c). In contrast, the sub-cluster shown in Fig. 3.10(b) is made up of only downward particles 

as shown in Fig. 3.2(d). Figure 3.11 shows results of the radial distribution function where Fig. 

3.11(a) is for the main clusters and Fig. 3.11(b) is for the sub-clusters for the case of magnetic 

particle-particle interaction strength λ=10 and magnetic particle-field interaction strength ξ=5. It is 

seen from these figures that there is a significant difference between the main clusters and the 

sub-clusters. For the case of the main clusters, shown in Fig. 3.11(a), the curves exhibit several peaks 

that imply the formation of thick chain-like clusters, as already discussed in Chapter 2, and the 

height of each peak tends to become lower with decreasing moment composition ratio. This 

characteristic quantitatively suggests that for the case of a smaller composition ratio the elongated 

thick chain-like clusters do not tend to grow larger. For the case of the sub-clusters, shown in Fig. 

3.11(b), there is no high peak at r
*≃1.4, and these curves exhibit features that are quite similar to 

those for a spherical particle system [10]. These characteristics clearly imply that the internal 

structure of sub-clusters is not based on the basic cluster unit shown in Fig.3.2(c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Difference in the internal structure between (a) a main cluster and (b) a sub-cluster for the 

case of Rupdwn=1/4, for the magnetic particle-particle interaction strength λ=10 and the magnetic 

particle-field interaction strength ξ=5. 
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Fig. 3.11 Difference in the radial distribution function between (a) main clusters and (b) sub-clusters 

for the case of the magnetic particle-particle interaction strength λ=10 and the particle-field 

interaction strength ξ=5. 

 

3.5.4 Order parameters for expression of a regime change in the internal structure of 

particle aggregates 

Finally, we discuss the regime change in the internal structure of particle aggregates in terms of the 

order parameters S2
(m)

 and Sny. Figure 3.12 shows the dependence of the order parameter S2
(m)

 on the 

magnetic particle-particle interaction strength λ for no applied magnetic field ξ=0. For the case of 

Rupdwn=1, the order parameter steeply increases from λ=7 and approaches a large value S2
(m)≃0.6 at 

λ=10. This characteristic is dulled with decreasing composition ratio Rupdwn whereby the saturated 

value at λ=10 tends to a lower value. This feature, which has already been discussed in previous 

sections, clearly implies that smaller clusters are formed in the system for the case of a smaller 

moment composition ratio. On the other hand, the starting point for an increase in the order 

parameter is not significantly dependent of the value of the composition ratio Rupdwn. This may be 

reasonably understood because the magnetic particle-particle interaction strength between a pair of 

upward and downward particles is a main factor in the formation of specific clusters. 

a 

b 
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Figure 3.13 shows the dependence of the order parameter Sny on the magnetic particle-field 

interaction strength ξ for the magnetic particle-particle interaction strength λ=10. It is seen that the 

order parameter Sny monotonically increases with increasing values of magnetic particle-field 

interaction strength, and this feature is common among the three cases of the moment composition 

ratio. The reason why the curve for Rupdwn =1 increases more slowly than the curves for the other 

cases in the region between ξ≃1 and ξ≃3 is that the closely-packed clusters are more stable against a 

dissociation as the magnetic moments can align with the magnetic field direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 Dependence of the magnetic moment order parameter S2
(m)

 on the magnetic 

particle-particle interaction strength λ for various cases of the moment composition ratio Rupdwn. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Dependence of the order parameter Sny, regarding the alignment of the magnetic moments 

with the applied magnetic field direction, on the magnetic particle-field interaction strength ξ for the 

various cases of the moment composition ratio Rupdwn. 
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3.6 Conclusion 

We have investigated the behavior of a suspension composed of magnetic cubic particles on a 

material surface in order to apply the characteristics of a cubic magnetic particle dispersion to the 

development of the surface modification technology. We have expanded the study in Chapter 2 to 

consider a variety of ratios of the number of particles with the magnetic moments aligning in the 

upward and downward directions. The simulations are conducted in the situation of a magnetic field 

applied parallel to the material surface and a strong gravitational field acting normal to the material 

surface. We have treated a quasi-2D suspension composed of cubic hematite particles in the situation 

of thermodynamic equilibrium. Monte Carlo simulations have been performed in order to elucidate 

the dependence of particle aggregation on the moment composition ratio, the magnetic 

particle-particle interaction strength and the magnetic particle-field interaction strength. From the 

Monte Carlo simulations, it is seen that the moment composition ratio has a significant effect on the 

regime of particle aggregates. As the value of the moment composition ratio is decreased in the 

situation of no applied magnetic field the size of closely-packed clusters becomes smaller and in the 

situation of a strong magnetic field thin linear clusters are formed. Therefore we understand that a 

decrease in the moment composition ratio leads to a suppression of the growth of large 

closely-packed clusters. This suggests that the composition ratio may be used as a technique for 

controlling the size of closely-packed clusters of cubic hematite particles on the material surface, 

even in the situation of a strong magnetic field. 
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Chapter 4 Internal structures of the particle aggregates of a suspension composed 

of cubic hematite particles from 3D Monte Carlo simulations 

 

4.1 Introduction 

In Chapters 2 and 3, from the viewpoint of application to a surface modification technology, we have 

considered a quasi-2D suspension composed of cubic hematite particles in thermodynamic 

equilibrium in order to investigate the regime of phase change in the aggregate structures. In the 

quasi-2D system, we have treated a limited motion, where the cubic particles do not perform a full 

three dimensional (3D) rotational motion. In contrast to the implementation of a 2D system, it is 

significantly more difficult to treat the translational and rotational motion of cubic particles in a 3D 

simulation because the assessment of a particle-particle overlap is more complex.  

There have been several simulation studies a 3D system regarding a suspension composed 

of magnetic and non-magnetic cubic particles [1-6]. Pyanzina, et al. have compared the 

self-assembly in the systems of both magnetic spherical particles and magnetic cubic particles by 

means of molecular dynamics simulations [1]. Donaldson, et al. have investigated the self-assembly 

processes of magnetic superball particles for which the particle geometry is changed from sphere to 

a perfect cube by employing a shape parameter [2, 3]. Vutukuri, et al. have discussed the phase 

behavior of cubic colloidal particles in an electric field by means of Monte Carlo simulations [4]. 

John et al. have investigated the lyotropic phase behavior of hard cubic particles by means of Monte 

Carlo simulations [5, 6]. In these studies, several cases of cubic particle models have been addressed 

with the magnetic dipole moment pointing a direction toward the face (1, 0, 0), the edge (1, 1, 0) and 

the corner (1, 1, 1) of the cube.  

As was mentioned in Chapter 1, a magnetic particle suspension has a potential for 

application to both mechanical dampers and magnetic hyperthermia treatments. The cluster 

formation of cubic particles is expected to have a significant effect on the physical characteristics of 

the suspension such as the magnetorheological properties and the particle orientational properties 

that are important factors in these applications. For the successful application of a cubic magnetic 

particle suspension, it is necessary to further investigate the aggregate structures of magnetic cubic 

particles both in thermodynamic equilibrium and in a flow field.  

From this background, we treat a 3D suspension composed of cubic hematite particles in 

thermodynamic equilibrium and investigate, by means of 3D Monte Carlo simulations, the 

dependence of the aggregate structures on a variety of factors such as the magnetic particle-particle 

interaction strength, the magnetic particle-field interaction strength and the particle volumetric 

fraction. In order to quantitatively and qualitatively discuss the aggregate structures, we use 

snapshots of particle aggregates, a radial distribution function, an order parameter and an 

orientational distribution function. 
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4.2 Model of magnetic cubic particles 

In the present study, we employ the simplified model of a cubic hematite particle that is shown in the 

Fig. 4.1. A cube with side length d is assumed to be magnetized in a diagonal direction with a 

magnetic dipole moment m=mn situated at the particle center. In the present Monte Carlo simulation, 

a uniform magnetic field H is applied in the z-axis direction as H=Hh=(0, 0, H). 

 In Chapters 2 and 3, we treated a quasi-2D system with the rotational motion restricted 

about a line normal to the plane of the material surface under the assumption of a relatively strong 

gravitational field. In contrast the present study employs a 3D Monte Carlo simulation where the 

cubic particles are free to perform a full rotational and translational motion. The magnetic 

particle-particle interaction energy uij
(m)

 and the magnetic particle-field interaction energy ui
(H)

 

employed in  Chapter 2 and Chapter 3 remain applicable and the present phenomenon is governed 

by the non-dimensional parameters λ which represent the strengths of magnetic particle-particle 

interaction λ=μ0m
2
/ (4πd

3
kT) and ξ which represent the strengths of the magnetic particle-field 

interactions ξ=μ0mH/(kT) relative to the thermal energy. In these non-dimensional parameters, μ0 is 

the permeability of free space, k is Boltzmann’s constant, and T is the absolute temperature of a 

suspension. 

 In the case of a 2D system, the cluster unit composed of 4 particles, shown in Fig. 4.2 (a) 

is the preferred configuration in the situation of no applied magnetic field, as already discussed in 

Chapter 2. On the other hand, in the case of a 3D system, these 4 particle cluster units tend to 

combine with each other to grow a cluster unit composed of 8 particles, shown in Fig. 4.2(b). From 

the energy analysis of cluster units, we understand that these cluster units shown in Fig. 4.2(b) 

provide the lowest magnetic interaction energy for an 8-particle system. Therefore, in the absence of 

an external magnetic field, a large closely-packed cluster is expected to be formed by means of the 

combination and expansion of these cluster units.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Particle model showing the coordinate system and the z-direction of the applied magnetic 

field. 
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Fig. 4.2 Preferred configurations for clusters in the absence of an applied magnetic field. (a) a cluster 

unit composed of 4 particles and (b) a cluster unit composed of 8 particles. 

 

4.3 Description of the characteristics of the system 

In Chapter 2, we employed two order parameters S1
(m)

 and S2
(m)

 for the quantitative discussion of the 

characteristics of the aggregate structures of cubic hematite particles for a 2D system. In the present 

study, we discuss the aggregate structures in a 3D system and address a related order parameter S3
(m)

 

expressed below as, 
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in which ψij
(n)

 is the angle between the magnetic moment direction ni and nj of particle i and j, 

Npair=N(N1)/2 is the number of pairs of particles and   is the ensemble average. It is noted that 

the order parameter S3
(m)

 approaches unity as large closely-packed clusters are formed in the system. 

 

4.4 Parameters for simulations 

Unless specifically noted, the present results were obtained by adopting the following parameter 

values. The volumetric fraction of cubic hematite particles is V=0.1, the number of particles N=490, 

and the cutoff radius rcoff
*
=rcoff/d=10 for calculating particle-particle interactions. The previously 

defined non-dimensional parameters λ and ξ that characterize the present phenomenon are set in the 

wide range of values λ=0~13.5 and ξ=0~20. We employed the usual periodic boundary condition in 

all the axis directions. The external magnetic field is applied in the z-axis direction and in the 

situation of a strong magnetic field it is expected that long chain-like clusters are formed in the 

magnetic field direction. We therefore employ a rectangular-parallelepiped simulation box aligned in 

the magnetic field direction. The size of the simulation region in each axis direction Lx, Ly, Lz is set 

with the ratio Lx: Ly: Lz=1:1:1.5. In the case of volumetric fraction V=0.1, the lengths of the 

simulation region are Lx=14.8, Ly=14.8 and Lz=22.3. The total number of Monte Carlo steps per 

simulation run, Nsmplmx is taken as Nsmplmx=5,000,000 and the final 80% of the simulation data were 

used for the data averaging procedure. 

a b 
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4.5 Results and discussion 

4.5.1 Influence of the magnetic particle-particle interaction strength 

First, we discuss the dependence of the aggregate structures on the magnetic particle-particle 

interaction strength λ in the absence of an applied magnetic field. Figure 4.3 shows the snapshots of 

aggregate structures for the case of no applied magnetic field ξ=0 for the cases of λ=5 shown in Fig. 

4.3(a), λ=13 shown in Fig. 4.3(b) and λ=13.5 shown in Fig. 4.3(c). Fig. 4.4 shows the order 

parameter S3
(m)

 defined in Eq. (4.1). It is noted that the value of the order parameter S3
(m)

 will 

increase as larger closely-packed clusters are formed in the system. 

In the case of the relatively low particle-particle interaction strength λ=5, shown in Fig. 

4.3(a), the particles do not aggregate to form specific clusters and the magnetic moments of the 

particles tend to incline in random directions. In the case of the relatively strong magnetic 

particle-particle interaction strength λ=13, shown in Fig. 4.3(b), it is seen that particles tend to form 

large loosely-packed clusters where there are a few constituent particles in face-to-face contact 

although specific clusters are not observed. Since the neighboring particles in the loosely-packed 

aggregate do not contact each other in a perfect face-to-face manner, the magnetic moments of 

particles tend not to be restricted to a specific direction. In the case of λ=13.5, shown in Fig. 4.3(c), 

closely-packed aggregate structures have been formed by the combination and expansion of the 

cluster unit shown in Fig. 4.2. A regime change in the internal structures of aggregates has occurred 

in the narrow range of λ=13~13.5.  

 These characteristics are clearly exhibited by the order parameter S3
(m)

 shown in Fig. 4.4. 

Since initially there are no specific clusters initially formed in the system, the order parameter 

exhibits a value almost zero until around λ=13. However, the value of the order parameter then 

steeply increases from S3
(m)

=0 at λ=13 to the value of S3
(m)

 =0.79 at λ=13.5, which clearly implies a 

regime change on the formation of the closely-packed clusters. The reason why the order parameter 

steeply increases within a narrow range can be explained in the following. In the case of cubic 

particles, the growth of the clusters is expected to be significantly influenced by the onset of the 

face-to-face particle configuration. For the case of λ=13, the particles weakly aggregate to form 

loosely-packed clusters where there are few neighboring particles in stable face-to-face contact, 

which leads to an almost zero value of the order parameter. On the other hand, for the case of λ=13.5, 

the particles aggregate to form the cluster unit composed of 4 particles in stable face-to-face contact, 

as observed in Fig. 4.3(c), which may be a necessary step in forming large closely-packed clusters. 

Therefore, the stable face-to-face contact configuration significantly contributes to the growth of 

closely-packed clusters, whereupon the order parameter shows a large value of S3
(m)

 =0.79. 
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Fig. 4.3 Aggregate structures for the magnetic particle-particle interaction strength of (a) λ=5, (b) 

λ=13 and (c) λ=13.5 for the case of no applied magnetic field ξ=0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Order parameter of the magnetic moment direction as a function of the magnetic 

particle-particle interaction strength λ. 

a 

b c 
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We here discuss the internal structure of the above-mentioned clusters in terms of the 

orientational distribution function. Figure 4.5 shows the orientational distribution function θ for 

the case of no applied magnetic field ξ=0, where Fig. 4.5(a) is for the magnetic particle-particle 

interaction strength of λ=13 and Fig. 4.5(b) is for λ=13.5. It is noted that the results in Fig. 4.5 show 

the orientational characteristics of the magnetic moments of the cubic particles where, as shown in 

Fig. 4.1, θ is the polar angle from the z-axis and  is the azimuthal angle from the x-axis. In the case 

of λ=13, shown in Fig. 4.5(a), the uniform distribution lacks a specific peak and quantitatively 

implies that the magnetic moments incline in random directions and that specific clusters are not 

formed in the system. In the case of λ=13.5, shown in Fig. 4.5(b), there are 8 relatively high peaks in 

the orientational space that quantitatively imply large closely-packed clusters are formed in the 

system. The reason why there are 8 high peaks may be explained because, in our cubic model, the 

magnetic moment may point in the direction towards any one of the 8 corners of the cube. If the 

closely-packed clusters are formed with particle alignment in a perfect face-to-face contact, as 

shown in Fig. 4.2(b), then the direction of the magnetic moment of each constituent particle is 

strongly restricted to one of the possible 8 corner directions. The large closely-packed clusters, as 

shown in Fig. 4.3(c), are formed from the combination of this basic cluster unit, hence, the 

orientational characteristics of this cluster unit appear in the orientational space as shown in Fig. 

4.5(b). From the above discussion, we conclude that in the situation of no applied magnetic field, an 

increase in the magnetic particle-particle interaction strength induces the formation of 

closely-packed clusters. Moreover, we understand that these closely-packed clusters are a 

characteristic cluster formation for a suspension of magnetic cubic particles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 The orientational distribution function for the magnetic particle-particle interaction strengths 

of (a) λ=13 and (b) λ=13.5 for the case of no applied magnetic field ξ=0. 

 

a b 



55 

 

4.5.2 Influence of the magnetic particle-field interaction strength 

Next, we discuss the effect of an external magnetic field on the regime change in the closely-packed 

clusters, shown in Fig. 4.3(c). Figure 4.6 shows snapshots of aggregate structures in the case of a 

strong magnetic particle-particle interaction strength λ=13.5 where Fig. 4.6(a) is for the case of the 

magnetic particle-field strength ξ=4 and Fig. 4.6(b) is for the case of ξ=7. In the case of a relatively 

weak applied magnetic particle-field interaction ξ=4, shown in Fig. 4.6(a), it is seen that the 

closely-packed aggregate structures observed in Fig. 4.3(c) have collapsed due to the influence of the 

external magnetic field. As the magnetic particle-field strength is further increased to ξ=7, shown in 

Fig. 4.6(b), it is seen that the closely-packed clusters are transformed into wall-like clusters aligned 

in the magnetic field direction. The configuration of neighboring particles in the wall-like structures 

is very distinctive whereby they combine with each other in an offset face-to-face configuration. 

From the analysis of the potential curves [7], it is clearly indicated that the configuration based on an 

offset face-to-face contact is preferred in the situation of a strong magnetic field. From these results, 

we understand that a magnetic field induces a regime change from the closely-packed clusters in Fig. 

4.3(c) into the wall-like clusters in Fig. 4.6(c). 

The characteristic of the order parameter Snz
(m)

 of the magnetic moment direction evidently 

implies that there is a regime change in the internal structure. Figure 4.7 shows the dependence of 

the order parameters Snz
(m)

 on the magnetic particle-field strength ξ for the two cases of magnetic 

particle-particle interaction strength λ=5 and λ=13.5. For the case of a small magnetic 

particle-particle interaction strength λ=5, the order parameter gradually increases relatively smoothly 

with increasing value of the magnetic particle-field strength as the magnetic moment of each single 

particle inclines toward the magnetic field direction. In contrast, in the case of λ=13.5, where the 

closely-packed clusters are formed without an applied magnetic field, the values of the order 

parameter exhibit lower values than for the case of λ=5 until around ξ≃5. This is because the 

magnetic particle-particle interactions function to prevent the magnetic moments from inclining 

toward the magnetic field direction. That is, if the closely-packed clusters shown in Fig. 4.3(c) are 

formed in the system, the magnetic moments of constituent particles do not tend to incline in the 

magnetic field direction which leads to a nearly zero value of the order parameter Snz
(m)

. As the 

magnetic particle-field strength is increased to ξ≃6, the value of the order parameter significantly 

increases, which quantitatively implies that there is a regime change in the internal structure from the 

closely-packed structures in Fig. 4.3(c) into the wall-like structures in Fig. 4.6(b). That is, due to the 

influence of the magnetic field, the magnetic moments of constituent particles in closely-packed 

clusters incline in the magnetic field direction. In the situation of a strong magnetic field, the 

orientations of the magnetic moments of the constituent particles of the wall-like aggregates are 

strongly restricted due to the influence of the magnetic interactions between neighboring particles, 

which leads to larger values of the order parameter in the region of ξ ≳ 5. 
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Figure 4.8 shows results of the orientational distribution function θ for the case of a 

weak applied magnetic particle-field ξ=4 where Figs. 4.7(a) and 4.7(b) are for the two cases of 

magnetic particle-particle interaction strength λ=0 and λ=13.5. For both cases, only a single peak 

appears at the zenithal angle of θ =0. This characteristic is in contrast to that for the case of ξ=0 and 

λ=0 shown in Fig. 4.5(b). The reason why the height of the peak in the case for λ=13.5 is lower than 

that for the case λ=0 is that the magnetic particle-particle interaction plays a role to prevent the 

magnetic moments from inclining in the field direction, as already mentioned above.  

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 4.6 Aggregate structures for the magnetic particle-field strength (a) ξ=4 and (b) ξ=7 for the 

magnetic particle-particle interaction strength λ=13.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Order parameter Snz
(m)

 of the magnetic moment direction for the magnetic particle-particle 

interaction strength of (a) λ=5 and (b) λ=13.5 as a function of the magnetic particle-field strength ξ. 
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Fig. 4.8 Dependence of the orientational distribution function θ on the magnetic particle-particle 

interaction strength (a) λ=0 and (b) λ=13.5 for the magnetic particle-field strength ξ=4 and 

volumetric fraction V=0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9 Dependence of the radial distribution function on the magnetic particle-particle interaction 

strengths λ=5, λ=13 and λ=13.5 for a strong magnetic particle-field strength ξ=20. 

 

Figure 4.9 shows the radial distribution function for the strong external magnetic 

particle-field ξ=20, where three cases of the magnetic particle-particle interaction strength are shown 

for λ=5, λ=13 and λ=13.5. In the case of a relatively weak interaction strength λ=5, the curve shows a 

gas-like distribution, which implies there is no cluster formation. As the magnetic particle-particle 

interaction strength is increased to λ=13, it shows a slight liquid-like characteristic with a first peak 

at r
*≃1.2 and a lower second peak at r

*≃2.5. As the magnetic particle-particle interaction strength is 

further increased to λ=13.5, several relatively high peaks appear at distances r
*≃1.1, 1.9, 2.3, 2.9, 3.5, 

etc. The first and third peaks evidently correlate to the characteristics of a linear chain-like cluster. If 

a b 
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the wall-like structures are formed, as shown in Fig. 4.6(b), then neighboring particles contact each 

other in a face-to-face configuration with an offset distance of r
*
=0.5. Therefore, the first peak in the 

radial distribution function appears at r
*
=(0.5

2
+1

2
)

1/2 ≃1.12, and the third peak occurs at 

r
*
=((0.5

2
+0.5

2
)
2
+(1

2
+1

2
)

2
)
1/2 ≃1.12 and implies the next neighboring pair of cubes. The second peak 

appearing at r
*
=(0.5+1.0)

2 
+(0.5+0.5)

2
)

1/2 ≃1.80 implies a twisted configuration formed from the first, 

second and third cubes [7]. The other peaks arise due to a similar configuration of wall-like clusters 

that are formed from the combination of the above-mentioned chain-like clusters. 

 

4.5.3 Influence of the volumetric fraction of particles 

Finally, we discuss the influence of the volumetric fraction of particles V on the cluster formation. 

Figure 4.10 shows snapshots of the aggregate structures for a strong magnetic particle-particle 

interaction strength λ=13.5 and a small volumetric fraction V =0.01 where Fig. 4.10(a) is for the 

magnetic particle-field strength ξ=0 and Fig. 4.10(b) is for ξ=15. It is noted that Figure 4.10 shows 

only a small part of the whole system in order to discern the internal structure more clearly. For the 

case of no applied magnetic field ξ=0 several cluster units of the type shown in Fig. 4.2(b) are 

formed in the system. However, the larger closely-packed clusters shown in Fig. 4.3(c) are not 

formed. This is because a small volumetric fraction provides little opportunity for the cluster units to 

contact with each other. In contrast, in the situation of a high volumetric fraction V =0.1, such an 

opportunity frequently appears, and therefore cluster units may grow to form the large 

closely-packed clusters shown in Fig. 4.3(c). It is evident from the formation of the cluster units 

observed in Fig. 4.10(a), that large closely-packed clusters are formed by the combination and 

expansion of these basic cluster units. On the other hand, in the case of a strong magnetic 

particle-field strength ξ=15 shown in Fig. 4.10(b), long chain-like clusters are formed in the z-axis 

direction of the magnetic field. From a comparison with the wall-like structures shown in Fig. 4.6(b), 

it is seen that for a strong magnetic particle-field strength, an increase in the volumetric fraction of 

particles induces a regime change from the thick chain-like clusters into the wall-like clusters. This 

is because a large volumetric fraction can provide an opportunity for chain-like clusters to contact 

with each other. That is, we may understand that the wall-like clusters in Fig. 4.6(b) are formed by 

the process of the chain-like clusters combining with each other.  

 Finally, we discuss the influence of the magnetic particle-field interaction strength on the 

aggregate structures in a dilute system that is implied from the order parameter Snz
(m)

. Figure 4.11 

shows the dependence of the order parameter Snz
(m)

 on the magnetic particle-field strength ξ for a 

volumetric fraction V =0.01 and magnetic particle-particle interaction strength λ=13.5. In this figure, 

the result already shown in Fig. 4.11 for V =0.1 has been replotted for reference. In the case of a 

small volumetric fraction V =0.01, the order parameter gradually increases with increasing values of 

the magnetic particle-field strength. This is quite different from the curve for V =0.1 and clearly 
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implies that small cluster units are easily transformed into chain-like clusters with increasing 

magnetic particle-field strength. Moreover, it is reasonably presumed that the lower values of the 

order parameter in the range of ξ ≲5 for the case V =0.1 is due to the magnetic particle-particle 

interactions of the large closely-packed clusters shown in Fig. 4.3 (c).  

 From these characteristics, we can conclude that in the case of a lager volumetric fraction 

of particles a larger magnetic particle-field strength is necessary in order to induce a regime change 

from the closely-packed structures into the chain-like or wall-like structures.  

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 4.10 Aggregate structures for the magnetic particle-field strength (a) ξ=0 and (b) ξ=15 for the 

magnetic particle-particle interaction strength λ=13.5 and the volumetric fraction V =0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Order parameter of the magnetic moments for the volumetric fraction V =0.01 and V =0.1 

and the magnetic particle-particle interaction strength λ=13.5 as a function of the magnetic 

particle-field strength ξ. 
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4.6 Conclusion 

We have investigated the aggregate structures for a dispersion in thermodynamic equilibrium 

composed of magnetic cubic particles by means of 3D Monte Carlo simulations. From the Monte 

Carlo simulations, we attempt to elucidate the dependence of a regime change in the aggregate 

structures on various physical parameters such as the magnetic particle-particle interaction strength, 

the magnetic particle-field interaction strength and the volumetric fraction of particles. We use the 

snapshots of aggregate structures for a qualitative discussion, and the radial distribution function, the 

order parameters and the orientational distribution function for a quantitative discussion. We 

summarize the main results obtained here in the following. In the situation of no applied magnetic 

field, as the magnetic particle-particle interaction strength is increased, closely-packed aggregate 

structures are formed by the combination and expansion of a basic cluster unit composed of 8 

particles. A regime change from the situation of no cluster formation to the formation of 

closely-packed clusters was found to occur in a narrow range of the magnetic particle-particle 

interaction strength. This is because closely-packed clusters tend to growth on the occurrence of a 

perfect face-to-face configuration. As the magnetic particle-field strength is increased, the magnetic 

moments of particles tend to incline in the magnetic field direction and wall-like clusters are formed 

in the system. That is, the magnetic field induces a regime change in the internal aggregate structure 

from the closely-packed clusters into the wall-like clusters. Moreover, in the case of no applied 

magnetic field, larger closely-packed clusters are formed in the system with an increasing volumetric 

fraction of particles. This is because a high volumetric fraction tends to enhance the opportunity for 

the particles to contact with each other. Similarly, in a strong external magnetic field, an increase in 

the volumetric fraction of particles induces a regime change from the thick chain-like clusters into 

the wall-like clusters. 
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Chapter 5 The translational and rotational friction coefficients of a cubic particle 

 

5.1 Introduction 

In Chapter 4, we investigated the aggregate structure in thermodynamic equilibrium by means of 3D 

Monte Carlo simulations, and we have understood that cubic particles aggregate in a face-to-face 

configuration. In the field of fluid engineering, typical applications for a magnetic particle 

suspension are mechanical dampers and actuators [1, 2] where a magnetorheological characteristic is 

controlled by means of an external magnetic field. A suspension composed of cubic hematite 

particles is expected to exhibit complex magnetorheological properties because the cubic particles 

tend to aggregate with an atypical face-to-face contact configuration. 

 In order to elucidate the magnetorheological properties of a particle suspension, there are a 

variety of micro-analysis simulation methods such as molecular dynamics, Brownian dynamics, 

lattice Boltzmann, dissipative particle dynamics and multi-particle collision dynamics [3, 4]. Among 

these simulation methods, perhaps the most straightforward is Brownian dynamics, although in this 

method the multi-body hydrodynamic interactions among the particles are not taken into account. 

However, Brownian dynamics is not directly applicable to a suspension composed of particles with a 

non-axisymmetric geometry, i.e cubic particles, because many of the translational and rotational 

friction coefficients or diffusion coefficients have not fully been clarified at the present. Hence, for a 

cubic particle suspension, we are required to develop a simulation technique with appropriate 

friction or diffusion coefficients which, in turn, may lead to the development of new applications for 

mechanical dampers and actuators. 

 The surface modification technology is one area of application for magnetic cubic particles, 

and consequently many researchers have investigated the phenomenon of the deposition of magnetic 

cubic particles on a material plane surface [5-8]. In many of these studies, an external magnetic field 

is used for controlling physical characteristics in regard to orientational properties and attachment 

properties. However, we understand that an applied magnetic field by itself cannot completely 

control the above-mentioned physical characteristics. If the magnetic particles are also charged, 

these characteristics are expected to be controlled more accurately by means of both an electric field 

and a magnetic field. From these considerations, it is evident that the development of a 

particle-based simulation method which is able to treat particle Brownian motion is important for the 

analysis of the dynamic characteristics of a dispersion composed of magnetic cubic particles. 

 From this background, in the following we estimate the translational and rotational 

diffusion coefficients of a cubic particle that are required for performing the Brownian dynamics 

simulations of a cubic particle suspension. In addition, we discuss the characteristic of a coupling 

between the translational motion and rotational motion. In concrete, we have analyzed the flow field 

around a cube via the commercial software ANSYS CFX in order to evaluate the force and torque 
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acting on a cube. The results of a numerical analysis are used for estimating the diffusion 

coefficients of a cubic particle and for discussing the coupling relationship between the translational 

and the rotational motion. 

 

5.2 Evaluation procedure for the friction coefficients 

The force F and the torque T acting on the ambient fluid by a particle are related to the fluid velocity 

v and the angular velocity ω as 
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in which R is the resistance matrix, expressed as 
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Equation (1) is rewritten using Eq. (2) as  
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ωRvRT

ωRvRF

db
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 We here describe the physical meaning of each component of the resistance matrix R. The 

matrix Ra relates the force acting on the ambient fluid to the translational velocity, and the matrix Rd 

relates the torque acting on the ambient fluid to the angular velocity. The matrices Rb and Rc imply 

the rate of the coupling between the translational motion and the rotational motion. That is, the 

situation of Rb=0 suggests that the translational motion is not influenced by the rotational motion, 

and similarly the situation of Rc=0 implies that the translational motion does not induce a rotational 

motion. If the relationship of Rb=Rb=0 is satisfied, then there is no coupling between the 

translational motion and the rotational motion. Hence, if the components of the resistance matrices 

are known, the force and the torque acting on the cube may be evaluated. In the situation of low 

Reynolds numbers that are much smaller than unity, it is known that the matrices Ra and Rd are 

diagonal with a common component T

cube  and R

cube  which are respectively the translational and 

the rotational friction coefficient of a cube, as discussed by Brenner [9]. However, the coupling 

characteristics of the translational and the rotational motion of a cube and the correct values of the 

friction coefficients T

cube  and R

cube  were not addressed in Brenner’s paper [9]. 

 In the present study, we analyze a flow field past a cube fixed in the system via the 

commercial software ANSYS CFX in order to elucidate the features of the resistance component 
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matrices. The flow field was obtained by numerically solving the Navier-Stokes equation with the 

continuity equation. In the following, we address a flow past a sphere and explain the evaluation 

procedure for deriving the friction or diffusion coefficients from the flow field analysis. We employ 

a similar derivation procedure in order to estimate the friction coefficients of a cube.  

 If we concentrate on a sufficiently slow flow problem past a sphere with the Reynolds 

number being much smaller than unity Re<<1, then the force F and the torque T acting on the 

ambient fluid are related to the translational velocity v and the angular velocity ω of the particle as  

 

vF
T

sphere   (5.4) 

ωT
R

sphere   (5.5) 

 

where T

sphere  and R

sphere  are the translational and the rotational friction coefficient, respectively. In 

the case of a sphere, these friction coefficients are known and may be expressed as 

 

aT

sphere  6   (5.6) 

38 aR

sphere     (5.7) 

 

in which η is the liquid viscosity and a is the radius of the sphere, whereby the translational and the 

rotational diffusion coefficients T
sphereD and R

sphereD  may then be expressed  

 

T

sphere

T

sphere

kT
D


   (5.8) 

R

sphere

R

sphere

kT
D


   (5.9) 

 

in which k is Boltzmann’s constant and T is the liquid temperature. For the case of a sphere, it is 

known that there is no coupling between the translational and the rotational motion, and therefore the 

resistance component matrices Rb and Rc in Eq. (5.3) yield to the relationship Rb=Rc=0. In contrast, 

the resistance component matrices Ra and Rd are diagonal matrices with a common component 

T

sphere  and R

sphere , respectively.  

 As in the case of a cube, where the friction or diffusion coefficients are not known in the 

form of analytical expressions, they may be evaluated by a numerical analysis method in the 

following manner. A sphere is fixed at a certain position in a uniform flow field U and the flow field 

is solved and the force F
P
=(Fx

P
, Fy

P
, Fz

P
) acting on the sphere may be evaluated from numerical 

analysis. If the uniform flow field is applied in the x-axis direction as U=(Ux, 0, 0), then the 

translational friction coefficient T

sphere  may be obtained from Eq. (5.3) using Fx
P
 and Ux as 
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x

P

xT

sphere
U

F
   (5.10) 

 In a similar procedure, if the rotational flow field Ω=(Ωx, 0, 0) is applied about the x-axis 

direction, the rotational friction coefficient R

sphere is expressed as  

 

x

P

xR

sphere
Ω

T
   (5.11) 

 

In the case of a cube, the relationship of Rb=Rc =0 is not necessarily satisfied but rather the 

resistance component matrices are expected to be dependent on the orientational configuration 

relative to a uniform flow and also on the Reynolds number Re, defined as 

 



dU
Re 0   (5.12) 

 

in which U0 is the representative velocity, d is the side length of the cube and ν is the kinematic 

viscosity.  

  

5.3 Assignment of the simulation parameters 

We employed the following values of the system parameters in performing the numerical simulations 

both for a uniform flow past a cube and for a rotational flow about the x-axis direction. We treat a 

slow problem for water with physical properties of viscosity η=889.9×10
-6

 Pa∙s, density ρ=997 

kg/m
3 

and kinematic viscosity  =8.926×10
-7

 m
2
/s relating to a temperature of 25 ℃. The side 

length of a cube is set as d=0.01 m and the cube is fixed at the origin of the xyz-coordinate system. It 

is required that the unit mesh size is taken sufficiently smaller than the side length of the cube, and 

therefore the side of a cube may be taken as any value provided the lattice system can be taken 

sufficiently fine. For the case of a uniform flow in the x-axis direction, the simulation box is 

rectangular, for the case of a rotational flow about the x-axis direction, it is cylindrical. We employ a 

no-slip boundary condition at the surface of the cube, and a zero-gradient condition at the outer 

boundary surface. In order to ensure the independence of the simulation results, the size of the 

simulation region, (Lx, Ly, Lz)=(1m, 0.5m, 0.5m), , is taken to be sufficiently large relative to the 

particle size. It is noted that we have confirmed that a simulation region taken double the size yields 

at most only a 1% deviation in the results. The inflowing uniform velocity is set as Ux=1×10
-6

 m/s 

and the angular velocity is taken as Ωx=1×10
-6

 rad/s. A uniform flow with Ux=1×10
-6

 m/s gives rise 

to Re=1.12×10
-2

 that is evaluated from Eq.(5.12) with U0=Ux and similarly, the rotational flow with 
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Ωx=1×10
-6

 rad/s leads to Re=1.12× 10
-4 

with U0=Ωxd. Both these cases satisfy the condition of a 

sufficiently slow flow with Re<<1.  

Table 1 shows the validity of the present numerical analysis for a spherical particle, where 

the numerical results are compared with the corresponding theory for the case of a slow uniform 

flow with Ux=1×10
-6

 m/s and a slow rotational flow with Ωx=1×10
-6

 rad/s. It is clearly seen from 

Table 1 that the numerical results of the force and the torque acting on the sphere are in good 

agreement with the theory. 

 

 

Table 5.1 The force and torque acting on the spherical particle. 

 

 
The force acting on  

the spherical particle 

The torque acting on  

the spherical particle 

The theoretical values [N]10×8.387=6 -11

x

Theory

x aUF   m][N10×2.7968 -153  　x

Theory

x aT   

The calculated values 

by ANSYS 
[N]10×8.392 -11ANSYS

xF  m][N10×2.770 -15  　ANSYS

xT  
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5.4 Results and discussion 

5.4.1 For the case of a uniform flow with a sufficiently low Reynolds number of 

Re=1.12×10
-2

 

We first consider the problem of a uniform flow past a cube in the x-direction in order to clarify the 

characteristics of the resistances matrices Ra and Rb. It is noted that θ is the angle between the 

direction of the z-axis and a representative direction of the cube that is normal to a criterion face and 

 is the rotation angle of a representative vertex about the z-axis measured from the x-axis toward the 

y-axis. The following results were obtained for a uniform flow with a sufficiently low Reynolds 

number of Re=1.12×10
-2

. 

 Figure 5.1 shows results of the flow field around a cube for the three different cases of 

configuration  =0° 5.1(a),  =30° 5.1(b) and  =45° 5.1(c), at the fixed value of θ=0°. Since a 

slow uniform flow is addressed, the fluid tends to flow along the faces of the cube and into the 

region behind the cube without flow separation for all cases of the slant angle . From the flow 

shown in Figs. 5.1(a) and 5.1(c), it is recognized that the flow lines are approximately symmetric 

about the y-axis line. This characteristic is well known for the case of a slow uniform flow past a 

circular cylinder. Figure 5.2 shows the components of the force Fig. 5.2(a) and the components of 

torque Fig. 5.2(b) acting on the cube in the uniform flow field. It is seen from Fig. 5.2(a) that the 

force component Fx in the x-direction is independent of the slant angle  and exhibits a constant 

value Fx≃1.161×10
-10

 N. In contrast, the face components Fy and Fz are almost zero and thus 

negligible in comparison to the force component Fx along the uniform flow direction. Moreover, 

considering the torque Fx (d/2)≃0.58×10
-12

 Nm evaluated with Fx≃1.161×10
-10

 N as a criterion value 

for comparison, it is seen from Fig. 5.2(b) that all the torque components Tx, Ty and Tz may be 

regarded as approximately zero. From these characteristics, we understand that a uniform flow gives 

rise to a force acting on the cube only in the uniform flow direction and does not induce a torque for 

any orientational configuration relative to the uniform flow. 

 We next consider the components of the force and torque for the case of a more general 

orientational configuration, i.e. (θ, )=(54.74°, 15°), of the cube in a uniform flow as shown in 

Fig.5.3. Table 5.2 shows the components of force and torque acting on the cube, where also shown 

for reference, <Fx>, is the mean value of Fx for different  from the previous case shown in Fig. 

5.2(a). As in the previous case, the fluid flows along the faces of the cube and leaves the cube 

without flow separation. It is seen from Table 5.2 that the force components Fy and Fz are 

sufficiently negligible and the force component Fx is equivalent to the value from the previous case 

shown in Fig. 5.2. Moreover, the torque components have negligible values that may be considered 

meaningless in comparison to the previous criterion value of Fx (d/2)≃0.58×10
-12

 Nm.  

 From these results, we conclude that the uniform flow with a sufficiently low Reynolds 

number gives rise to a force acting on the cube only in the uniform flow direction, and does not 
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induce a torque for any orientational configuration relative to the uniform flow direction.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 The flow field past a cube for the three different cases of configuration angle (a) =0°, 

(b) =30° and (c) =45° at the fixed value of θ=0° in the situation of a uniform flow field with a 

sufficiently low Reynolds number of Re=1.12×10
-2

.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 The components of force (a) and the components of torque (b) acting on the cube in a uniform 

flow field with a sufficiently low Reynolds number Re=1.12×10
-2

. 

a 

b c 

a b 
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Fig. 5.3 The flow field past the cube in the more general orientational configuration of (θ, 

)=(54.74°, 15°) in a 3D system. 

 

Table 5.2 The components of force and torque for the case of the more general orientational 

configuration (θ, )=(54.74°, 15°) in a uniform flow field. 

Fx  [N] 1.161×10
-10

 

Fy  [N] 4.36×10
-15

 

Fz  [N] 1.03×10
-14

 

Tx  [Nm] 1.31×10
-17

 

Ty  [Nm] 2.55×10
-17

 

Tz  [Nm] -2.94×10
-18

 

xF   [N] 1.161×10
-10

 

 

 We now describe the friction coefficients for a cube that are valid for a flow field with a 

sufficiently low Reynolds number Re <<1, using the above-mentioned flow characteristics. Since a 

uniform flow gives rise to a force acting on the cube only in the uniform flow direction as in the case 

of a sphere, the resistance component matrix Ra is expressed as a diagonal matrix: 

 


















T

cube

T

cube

T

cube

a







00

00

00

R   (5.13) 

 

in which T

cube  is the translational friction coefficient of the cube and is evaluated from Eq. (5.10) 

with the values of <Fx> and Ux as 

 

)( d
U

F

x

xT

cube  3384.110161.1
100.1

10161.1 4

6

10





 





 (5.14) 

 

Since a torque is not induced by a slow uniform flow, the resistance component matrix Rb is 
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expressed as  

 



















000

000

000

bR   (5.15) 

 

This expression Rb=0 implies that a rotational motion is not induced by a uniform flow.  

 

5.4.2 For the case of a rotational flow with a sufficiently low Reynolds number of 

Re=1.12×10
-4

 

We consider the problem of a rotational flow about the x-axis direction in order to evaluate the 

components of the resistance matrices Rc and Rd. The following results were obtained for a rotational 

flow with a sufficiently low Reynolds number of Re=1.12×10
-4

. Figure 5.4 shows the results of the 

components of the force Fig. 5.4(a) and the components of the torque Fig. 5.4(b) acting on the cube 

in the rotational flow field. It is noted that the results shown in Fig. 5.4 are for a variety of cases of 

the orientational angle  with a fixed angle of θ=0°.  

 It is seen from Fig. 5.4(b) that the torque component Tx has a meaningful value, 

independent of the orientational angle  and exhibits a constant value Tx≃7.14×10
-15

 Nm. In contrast, 

the components Ty and Tz are negligible in comparison to the torque component Tx. Moreover, 

considering a criterion value of Tx /(d/2)≃1.43×10
-12

 N where evaluated with Tx≃7.14×10
-15

 Nm, it is 

seen from Fig. 5.4(a) that all the force components Fx, Fy and Fz may be regarded as negligibly 

small. 

 From these characteristics, we understand that a rotational flow induces only a torque 

about the direction of the rotational flow field and does not induce a resultant force acting on the 

cube in a specific direction.  

 We next consider the force and torque components for the case of the more general 

orientational configuration of (θ, )=(54.74°,15°) in a rotational flow. Table 5.3 shows results of the 

components of force and torque acting on the cube, where the mean value <Tx> of the torque 

component Tx evaluated from the previous case is also shown for reference. It is seen from Table 5.3 

that the torque component Tx may be regarded as being equivalent to the mean value <Tx> from the 

previous case. The torque components Ty and Tz are seen to be sufficiently small relative to the 

component Tx and they may be considered negligible in comparison to the value of Tx. This 

characteristic implies that the torque acting on the cube in a rotational flow field is determined only 

by the torque about the direction of the rotational flow. Moreover, as in the previous case, all the 

force components may be considered negligible in comparison to the criterion value of Tx /(d/2)≃

1.43×10
-12

 N. 
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Fig. 5.4 The components of force (a) and the components of torque (b) acting on the cube in a 

rotational flow field with a sufficiently low Reynolds number Re=1.12×10
-4

. 

 

Table 5.3 The components of force and torque for the case of the more general orientational 

configuration (θ, )=(54.74°, 15°) in a rotational flow field. 

 

 

 

 

 

 

 

 

 

 From these results, we understand that the rotational flow with a sufficiently low Reynolds 

number induces only a torque about the direction of the rotational flow field and does not induce a 

force acting on the cube for the case of any orientational configuration. That is, the rotational motion 

does not induce a translational motion of the cube for this rotational flow field.  

 We now describe the friction coefficients for a cube that are valid for a flow field with a 

sufficiently low Reynolds number Re <<1, derived from the above-mentioned flow characteristics. 

Since a rotational flow induces a torque only in the direction of the rotational flow field, the 

resistance component matrix Rd is expressed as a diagonal matrix as follows: 

 


















R
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R
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R
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


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R   (5.16) 

Fx  [N] -2.23×10
-16

 

Fy  [N] 1.19×10
-14

 

Fz  [N] 3.94×10
-15

 

Tx  [Nm] 7.140×10
-15

 

Ty  [Nm] 1.95×10
-18

 

Tz  [Nm] 1.43×10
-18

 

xT   [Nm] 7.134×10
-15
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in which R

cube  is the rotational friction coefficient of a cube and is evaluated from Eq. (5.11) with 

the value <Tx> shown in Table 5.3 and the angular velocity Ωx of the rotational flow field as  

 

)(
39

6

15

552.210.1347
100.1

10134.7
d

T

x

xR

cube 

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


 





 (5.17) 

 

Since a slow rotational flow does not induce a force acting on the cube, the resistance component Rc 

is expressed as  

 



















000

000

000

cR   (5.18) 

 

From the characteristics of the friction coefficients of a cube that have been obtained from both a 

uniform flow and a rotational flow, we conclude that there is no coupling between the translational 

motion and the rotational motion in the situation of a sufficiently low Reynolds number. Therefore, 

as in the case of the sphere, the motion of the cube may be characterized by the two friction 

coefficients, i.e. the translational friction coefficient shown in Eq. (5.14) and rotational friction 

coefficient shown in Eq. (5.17).  

 

5.5 Application to the Brownian dynamics simulation method 

5.5.1 The basic equations of the translational and rotational motion of cubic particles 

Finally, we are able to describe the basic equations for the translational and rotational motion of 

cubic particles by taking into account the characteristics of the friction coefficients that were 

obtained in the previous sections. We have also concluded that there is no coupling between the 

translational motion and the rotational motion for a cube particle system as in the case of a spherical 

particle system. This characteristic implies that we are able to treat the translational motion and the 

rotational motion separately in a Brownian dynamics simulation.  

 If the position vector of the cubic particle is r and the unit vector of the magnetic moment 

m=mn is n, then the basic equations of the particle position and the magnetic moment direction 

employed in a Brownian dynamics simulation may be written as [10, 11] 

 

BPT

cube ttD
kT

ttt rFrr  )(
1

)()(   (5.19) 
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ΒPR

cube ttD
kT

ttt  nTnn )(
1

)()(   (5.20) 

 

in which Δt is the time interval, k is Boltzmann’s constant, T is the liquid temperature. F
P
 and T

P
 are 

the total force and torque acting on the particle. Δr
B
 and 

Β
 are respectively the random 

displacements inducing the translational and rotational Brownian motion. T

cubeD  and R

cubeD  are the 

diffusion coefficients of a cubic particle, and are expressed as  

 

T

cube

T

cube

kT
D


   (5.21) 

R

cube

R

cube

kT
D


   (5.22) 

 

Although the friction coefficients T

cube  and R

cube  have been shown in Eqs. (5.14) and (5.17), they 

are rewritten here in a different form. The friction coefficients )(meanT

sphere and )(meanR

sphere  of the sphere 

with the mean diameter of an inscribed and a circumscribed sphere are written as  

 

T

sphere

meanT

sphere 
2

31)( 
   (5.23) 

R

sphere

meanR

sphere  3)( )(
2

31
   (5.24) 

 

in which T

sphere  and R

sphere  are the friction coefficients of the inscribed sphere with diameter d. 

Using these mean friction coefficients, the translational and rotational friction coefficients T

cube  and 

R

cube  for the cube are written as  

 

)(meanT
sphere

T
cube

T
cube     (5.25) 

)(meanR
sphere

R
cube

R
cube     (5.26) 

 

in which T

cube  and R

cube  are modification coefficients given as T

cube =1.013 and R

cube =1.001 

from Eqs. (5.14) and (5.17). The values of T

cube  and R

cube  are approximately equivalent to unity 

and therefore, as a first approximation, the friction coefficients of the cube can be expressed by using 

those for a spherical particle with the mean diameter of an inscribed and a circumscribed sphere.  

 From the above discussion in regard to the friction coefficients, we may conclude that in 
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the case of a sufficiently low Reynolds number, the Brownian dynamics simulation method for a 

spherical particle system is straightforwardly applicable to a suspension composed of cubic particles 

by employing the above-mentioned friction coefficients of the cube in Eqs. (5.25) and (5.26).  

 

5.5.2 The validity of the Brownian dynamics simulations for cubic particles  

In order to verify the validity of the Brownian dynamics simulations employing the friction 

coefficients shown in Eqs. (5.25) and (5.26), we discuss the aggregate structure of magnetic cubic 

particles by focusing on simulation snapshots and the radial distribution function. It is noted that the 

distribution function is a reasonable index for a quantitative discussion on the internal structure of 

particle aggregates since it is significantly sensitive to the form of an aggregate structure. For 

performing the Brownian dynamics simulation, although it is necessary to consider a repulsive layer 

model, we will omit the description in this chapter and we will discuss the model in detail in Chapter 

6. We employ the results obtained from Monte Carlo simulations as a criterion result since Monte 

Carlo is a fully developed simulation technique and may be regarded as corresponding to a 

theoretical solution for an equilibrium state. Since the Brownian dynamics method for the simulation 

of magnetic cubic particles will be discussed in Chapter 6, we here only described the 

non-dimensional parameters λ and ξ that characterize the aggregation phenomenon. Two 

non-dimensional parameters λ and ξ respectively imply the strengths of the magnetic particle-particle 

interaction and the magnetic particle-field interaction. 

 Figure 5.5 shows the snapshots for the large magnetic particle-particle interaction strength 

of λ=30 for the case of no applied magnetic field ξ=0. Figure 5.5 shows the results obtained from a 

Brownian dynamics simulation Fig. 5.5(a) and a Monte Carlo simulation Figs. 5.5(b). Figure 5.6 

shows the radial distribution functions obtained from a Brownian dynamics simulation and a Monte 

Carlo simulation of a suspension with a magnetic particle-particle interaction strength λ=30 in the 

absence of an applied magnetic field ξ=0, with a volumetric fraction V=0.05 and a particle number 

N=490. 

 It is seen from Fig. 5.5(a) that the particles aggregate to form closely-packed clusters in 

the absence of an applied magnetic field ξ=0. Similarly, it is seen from Fig. 5.5(b) that the 

closely-packed clusters are also observed by means of a Monte Carlo simulation. This 

closely-packed cluster is based on the cluster unit shown in Fig. 4.2(b) which leads to a minimum 

energy configuration as already discussed in Chapter 4. From a comparison of these two snapshots, 

it is qualitatively understood that a physically reasonable result may be obtained by the above 

Brownian dynamics method for cubic particles. This is quantitatively supported by results from the 

radial distribution function shown in Fig. 5.6 where it is evident that the result obtained by a 

Brownian dynamics simulation is in good agreement with the corresponding Monte Carlo simulation 

in regard to the shape of the curve, peak position and the height of each peak. This quantitatively 



75 

 

implies that the aggregate structure of the magnetic cubic particles is in good agreement with that 

obtained by a Monte Carlo simulation. This evidently verifies that the diffusion coefficients shown 

in Eqs. (5.14) and (5.17) are able to be used for the case of a cubic particle in Brownian dynamics 

simulations shown in Eqs. (5.25) and (5.26). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 The snapshots from (a) Brownian dynamics simulations and (b) Monte Carlo simulations for 

the large magnetic particle-particle interaction strength λ=30 and no applied magnetic field ξ=0.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Radial distribution functions for the magnetic particle-particle interaction strength λ=30 for 

no applied magnetic field ξ=0. 
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5.6 Conclusion 

In the present study, we considered the problem of flow past a cube by means of numerical analysis 

in order to clarify the characteristics of the translational and rotational friction coefficients that are 

required to perform a Brownian dynamics simulation for a cubic particle system. In concrete, by 

estimating the force and torque acting on a cube in the case of a uniform flow field and a rotational 

flow field with Reynolds number being much smaller than unity, we have discussed whether or not 

the translational and the rotational motion have a coupling characteristic in the situation of a 

sufficiently slow flow field. From the characteristics of the friction coefficients of a cube that have 

been obtained from both a uniform flow and a rotational flow, we may understand that there is no 

coupling between the translational motion and the rotational motion. This characteristic is 

significantly similar to that for the case of a spherical particle. Hence, the motion of the cube can be 

expressed with only two friction coefficients, as in the case of a spherical particle, i.e. the 

translational friction coefficient and the rotational friction coefficient. Moreover, we have shown that 

the friction coefficients of a cubic particle may be expressed, as a first approximation, by the friction 

coefficients of a sphere with the mean diameter of an inscribed and a circumscribed sphere. 

Employment of these friction coefficients for a cube enables the implementation of a Brownian 

dynamics simulation for a suspension composed of cubic particles as in the same manner as for the 

case of a spherical particle suspension.  
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Chapter 6 Brownian dynamics simulations of a suspension composed of cubic 

hematite particles in the equilibrium situation 

 

6.1 Introduction  

In addition to the application of magnetic particle suspensions in the field of fluid engineering to 

mechanical fluid devices such as mechanical dampers and actuators, they also have a significant 

potential for application in the field of medical engineering. For example, a variety of studies 

regarding magnetic hyperthermia treatments have been addressed [1-3]. This is a treatment that kills 

tumor or cancer cells by employing the heating effect generated by the relaxation phenomenon of the 

magnetic moments of dispersed particles in an alternating magnetic field. Several simulation studies 

have been conducted in order to investigate the relationship between the characteristics of a heating 

effect and the behavior of the aggregate structures of magnetic particles in an alternating magnetic 

field [4-6]. However, these studies treated a suspension composed of spherical particles, and 

therefore it may be desirable to expand this kind of study to a suspension composed of non-spherical 

particles such as rod-like, disk-like and cube-like particles. The relationship between the aggregate 

structures and their heat generation characteristics in an alternating magnetic field may be elucidated 

by a particle-based simulation method such as Brownian dynamics. The Brownian dynamics 

simulation is considered to be a useful simulation tool for a suspension of axisymmetric particles 

such as spherical, rod-like and disk-like particles [7]. However, the Brownian dynamics method for 

non-axisymmetric cube-like particles has not been currently developed because the relationship 

between the components of the friction or diffusion tensor in the case of cubic particles has not fully 

been clarified. From this background, in order to develop a Brownian dynamics simulation for a 

cube-like particle suspension, in Chapter 5 we clarified there is no coupling between the translational 

motion and the rotational motion, as in the case of a spherical particle, in the situation of the 

Reynolds number being sufficiently smaller than unity.  

 The remaining difficulty in developing a Brownian dynamics simulation code is the 

treatment of particle-particle overlap and the treatment of the particle-particle repulsive interaction. 

Up to the present, various simulation models for a cubic particle have been employed by several 

researchers [8-12]. John et al. modeled cube-like particles as clusters of hard spheres within a cubic 

frame in order to investigate the lyotropic phase behavior of cube-like particles by means of Monte 

Carlo simulations [8, 9]. Donaldson et al. [10] employed a repulsive layer model based on an 

assembly of sub-unit spheres when they investigated the most preferred particle configuration for 

clusters formed in a quasi-two dimensional (quasi-2D) system by means of molecular dynamics 

simulations. In addition, they employed a similar model in order to investigate the aggregate 

structures of magnetic cube-like particles in a three dimensional (3D) system also by means of 

molecular dynamics simulations [11, 12]. Brownian dynamics simulations require relatively high 
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computation time, and therefore an efficient repulsive layer model is desirable in order to obtain a 

more accurate result with a much lower simulation cost. 

 From this background, in the present study, we first propose a new steric layer model for 

the steric particle-particle interactions and verify the validity of this interaction model by performing 

3D Brownian dynamics simulations in order to make a comparison with the corresponding Monte 

Carlo simulation. 

 

6.2 Particle model  

As in previous Chapters, we employ a simplified model of a cubic hematite particle with a side 

length d, which has a magnetic dipole moment m=mn pointing in a diagonal direction at the center 

of the cube as shown in Fig. 6.1(a). The cubic particle is assumed to be coated by a uniform steric 

layer with thickness δ. If the position vector of particle i is denoted by ri and the magnetic moment 

of particle i is denoted by mi=mni, then the expressions for the forces and torques acting on a particle 

i expressed as 
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in which F ij
(m)*

 and T ij
(m)*

 are the magnetic force and torque acting on particle i by particle j due to 

the magnetic particle-particle interactions between the particles and T i
(H)*

 is the magnetic torque 

acting on particle i due to an external magnetic field H (H=|H|). Also, ni is the unit vector of the 

magnetic moment mi of particle i, tij is the unit vector denoting the direction of particle i relative to 

particle j, expressed as tij=rij/rij, where rij =rirj is the relative position of particle i to particle j, and 

rij=|rij|. The non-dimensional parameters λ and ξ are expressed as λ=μ0m
2
/(4πd

3
kT) and ξ=μ0mH/(kT), 

where k is the Boltzmann’s constant, T is the absolute temperature of the liquid and μ0 is the 

permeability of free space. These non-dimensional parameters λ and ξ implies the strength of the 

magnetic particle-particle interaction and the magnetic particle-field interaction, respectively. 

 The particles dispersed in the base liquid are generally coated with an electric double-layer 

or a steric layer in order to obtain a stable dispersion. In the previous Chapters 2, 3 and 4, we 

employed a solid particle model without a repulsive layer because the interaction energy due to the 

overlap of the repulsive layers for the case of two cubic particles has not, to date, been derived as a 

mathematical expression. In the Monte Carlo simulations, the solid particle model above is a 

reasonable first approximation, but in the Brownian dynamics simulations, the use of a solid particle 
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model may have fatal consequences. In order to consider the interaction due to the overlap of the 

repulsive layers, Donaldson et al. modeled the repulsive layer of a cubic particle by employing 

spherical particles with the same diameter. They concluded that the Nsph=5 model as shown in Fig. 

6.1(b) is an appropriate model from the viewpoint of simulation time and simulation accuracy [10], 

where Nsph is the number of spherical particles per cube side. However, if we apply the Donaldson 

model shown in Fig. 6.1(b) to the dispersion treated in the present study, composed of some 500 

particles, then the computation time would be prohibitively large. Therefore, in the present study, we 

propose the new steric layer model as shown in Fig. 6.1(c), which is expected to obtain results with a 

reasonably high degree of accuracy with less computation time. 

 The interaction energy uiajb
(V) *

 due to the overlap of the steric layers between two spheres 

ia and jb with different diameters dia and djb coated with the steric layer of thickness δ has already 

been proposed by Suzuki et al. [13], and the theoretical expression for uiajb
(V) *

 has been described in 

detail in their paper. The force Fiajb
(V) * 

and torque Tiajb
(V) *

 acting on the particles due to the overlap 

of steric layers may be obtained from vector analysis of the interaction energy uiajb
(V) *

 [13], and are 

expressed as 
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That is, the repulsive force |F
(V)*

| acting between cubic particles is expressed as  
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in which Np is the number of constituent spherical particles for the model of one cubic particle with a 

steric layer. The non-dimensional parameter λV, arising from the non-dimensionalization procedure, 
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represents the strength of the repulsive interaction relative to the thermal energy and is expressed as 

λV=πnsd0
2
/2, where ns is the number of surfactant molecules per unit area on the surface of a 

spherical particle and d0 is the diameter of a representative spherical particle, and in the case of the 

present study, the side length d of the cubic particle is employed. 

 Here, we describe our sphere-connected model, shown in Fig. 6.1(c), for treating the 

repulsive interaction due to the overlap between the steric layers that uniformly coat the cubic 

particles. In this model, a cubic particle with side length d employs three different size spherical 

particles with diameters denoted as dcenter, dedge and dcorner. An inscribed sphere of diameter dcenter=d 

is initially placed at the center of the cube and then 12 spheres of diameter dedge are arranged so that 

each sphere is in contact with the inscribed sphere and also with the two faces which constitute the 

intersection line of the sides of the cube. Finally, in order to represent the corners of the cube, 8 

spheres with diameter dcorner are then arranged in contact with the inscribed sphere and also with the 

three faces which constitute the corner of the cube. As it is assumed each spherical particle is coated 

by a steric layer of thickness δ, the steric layer model shown in Fig. 6.1(c) is employed for 

evaluating the repulsive interaction energy or force between the two cubic particles coated by a 

uniform steric layer in the manner shown in Fig. 6.1(a). Each diameter dcenter, dedge and dcorner can be 

straightforwardly evaluated from a geometric calculation.  

  

 

 

 

 

 

 

 

 

 

Fig. 6.1 Particle model: showing (a) the cubic particle coated by a steric layer, (b) the repulsive layer 

model of Donaldson et al. and (c) our model employed for the evaluation of the repulsive interaction 

between two cubic particles. 

a b c 
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6.3 Brownian dynamics simulations 

In Chapter 5, we clarified that there is no coupling between the translational motion and the 

rotational motion of a cubic particle; as in the case of a sphere, in the situation of a sufficiently slow 

flow field, and we have briefly described the basic equations of the translational and rotational 

motion of cubic particles. In this section, we describe in more detail the equations of motion of cubic 

particles. If the position vector of a cubic particle is r and the unit vector of the magnetic moment 

m=mn is n, then the Brownian dynamics simulations are performed with the following equations. It 

is noted that a component normal to the magnetic moment direction is denoted by the subscript , 

and a component parallel the magnetic moment direction is denoted by the subscript | |. 
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in which Δt is the time interval in a simulation, F
P
 is the total force acting on the particle, T⊥

P
 is the 

torque corresponding to the component perpendicular to the magnetic moment axis direction, )(1 te  

and )(2 te  are orthogonal unit vectors normal to the magnetic moment, and T

cubeD  and R

cubeD  

are the translational and rotational diffusion coefficients of the cubic particle. are the translational 

and rotational diffusion coefficients of the cubic particle. Following on from Chapter 5 we employ, 

as a first approximation, the translational friction coefficient mean

T

mean d 3  and the rotational 

friction coefficient 3

mean

R

mean d   of a sphere with diameter dmean= 2)31( /d . Hence, the 

diffusion coefficients T

cubeD  and R

cubeD  of a cubic particle are expressed as 
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Δr
B
, B

1Δ   and B

2Δ   are the translational and rotational random displacements due to Brownian 

motion and they have following stochastic characteristics:  
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in which I is a unit tensor.  
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 In addition, as in the case for non-axisymmetric particles, it is necessary to consider the 

rotational motion about the magnetic moment of the cubic particle. If we define a unit vector normal 

to the magnetic moment by the notation n⊥, then the equation of motion for the rotational motion 

about the magnetic moment is expressed as 
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in which T||
P
 is the torque about the magnetic moment axial direction and Δ||

B
 is a random rotational 

displacement with the following stochastic characteristics:  
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6.4 Quantitative evaluation of the internal structure of the aggregates 

In order to quantitatively evaluate the internal structure of the cubic particle aggregates, we define a 

new orientational pair correlation function fo.c.
(e)

(r) for the three plane direction vectors e1, e2 and e3 

of a cubic particle. 
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in which n0 is the number density, N is the number of particles in the system, r is the radial distance 

from the particle of interest, g(r) is the radial distribution function and ),( lk
ij

ee  is the angle between 

the direction vectors ek and el of the cubic particles i and j.  '  implies the summation with respect to 

particles that are located in the infinitesimal shell volume ΔV=4πr
2
Δr at the radial distance r from 

the particle of interest, 


 is the ensemble average, and P4(cosψij) is the fourth Legendre 

polynomial, expressed as P4(cosψij)= (35cos
4
ψij－30cos

2
ψij +3)/8. It is noted that the orientational 

pair correlation function gives rise to a value fo.c.
(e)

(r)=1 if the faces of the cubic particles are 

oriented parallel to each other. The radial distribution function g(r) is defined as 
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in which ΔNi(r) is the number of particles located in the infinitesimal shell volume ΔV at the radial 

distance r from the particle i. It is noted that the quantitative evaluation methods described above are 

valid for a 3D system. In the case of a quasi-2D system, we deal with the infinitesimal area 

ΔS=2πrΔr instead of the infinitesimal shell volume ΔV=4πr
2
Δr and then ΔNi(r) is the number of 

particles located in the infinitesimal area ΔS at the radial distance r from the particle i.  

For reference, the following order parameter S4
(e)

 is defined in order to quantitatively discuss 

the internal structure of the aggregates in the system. 
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It is noted that the order parameter gives rise to a value of S4
(e)

=1 if all the faces of cubic particles in 

the system are oriented parallel to each other. 

 

6.5 Parameters for simulations 

Unless specifically noted, the Brownian dynamics simulations have been performed with the 

following values. The volumetric fraction of particles V is set as V=0.05, the number of particles is 

N=490, the cutoff distance rcoff
*
 = rcoff /d of the magnetic interaction between cubic particles is 

rcoff
*
=10, the thickness δ

*
 = δ/d of the steric layer is δ

*
=0.15, the non-dimensional parameter λV is 

taken as λV=100, 115, 150, 225 depending on the steric layer model. The non-dimensional 

parameters λ and ξ are set in the wide range of λ=0~30 and ξ=0~20. We employed periodic boundary 

conditions for the xyz-axis directions. An external magnetic field is applied in the z-axis direction. 

We have confirmed that the internal structure of the particle aggregates may be dependent on the 

volumetric fraction. However, the objective of the present study is to verify the validity of 

implementing the steric interaction model in a Brownian dynamics simulation for a cubic particle 

suspension. In the present study, we employ a volumetric fraction V=0.05 that is qualitatively 

straightforward in order to be able to discern the internal structure of particle aggregates. In the 

Brownian dynamics simulations, the time interval Δt
*
=0.00005, and the total number of time steps 

per simulation run is Ntimemx =5,000,000. In the Monte Carlo simulations, the total number of Monte 

Carlo steps Nsmplemx=1,000,000. In the Brownian dynamics simulations, if the magnetic particles 

aggregate to form clusters, then the faces of two neighboring cubic particles overlap by around 0.1d. 

In the Monte Carlo simulations, therefore, solid cubic particles with no steric layer and a side length 

of 1.2d have been employed in order to yield significant peaks in the pair orientational correlation 

function at similar separation positions to the Brownian dynamics particles, as will be shown later. It 

is noted that cubic particles including the steric layer will be shown in the snapshots that follow. 
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6.6 Results and discussion 

6.6.1 Comparison of the present steric layer model with other researchers’ models  

6.6.1.1 Steric repulsive force  

As discussed in section 6.2, we proposed a new steric layer model for evaluating the repulsive 

interaction due to the overlap of cubic particle steric layers, shown in Fig. 6.1(c). In order to verify 

the validity of the present steric layer model, we compare it with the results obtained using the 

models proposed by Donaldson et al. [10]. 

We first discuss the dependence of the repulsive force on different steric layer models 

including the Donaldson n et al. model. Figure 6.2 shows the repulsive force |F
(V)*

|=|F
(V)

|/(kT/d) 

acting on the cubic particles as a function of the center-to-center separation distance r
*
 between the 

two particles of interest when located along the particle axis line with the neighboring faces of the 

cubes in a parallel arrangement. Figure 6.2(a) shows the comparison of results for the present steric 

layer model and the Donaldson models for a common given value of λV=150. It is seen from Fig. 

6.2(a) that the value of the repulsive force is dependent on the number Nsph of spherical particles per 

cube side in the Donaldson model. This is because the total repulsive force between two particles is 

evaluated from the summation of the interaction of each pair of constituent spherical particles. The 

total repulsive force, therefore, has been employed as a criterion for comparison rather than the 

repulsive interaction strength λV itself. Figure 6.2(b) shows results of the repulsive force |F
(V)*

| for 

the present model and the three models of Donaldson et al., which were obtained by employing an 

appropriate value of λV in order that the total repulsive force is approximately equivalent to that of 

the present model that employs λV=150. It is seen from Fig. 6.2(b) that a similar repulsive force acts 

between particles in the range of 1.1≲r
*≲1.3 although a relatively significant discrepancy occurs in 

the range of 1≲r
*≲1.1. It will be shown later in the results of the radial and pair orientational 

correlation functions that two cubic particles overlap in a face-to-face contact manner in the range of 

1.2≲r
*≲1.3 and clearly implies that the present results for λV=150 can be compared with those of the 

Donaldson et al. models with parameter values λV=115, 100 and 225 for the respective values Nsph=3, 

Nsph=5 and Nsph=7. 
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Fig. 6.2 Dependence of the repulsive force |F(V)
*
| on the steric layer model and the models proposed 

by Donaldson et al. [10] as a function of the center-to-center separation distance r
*
. 

 

6.6.1.2 Computational time of a simulation  

We now discuss the relationship between the computation time, the CPU time, required by each 

steric layer model. Table 1 shows the CPU time required by one Intel core i5 650 3.20 GHz 

processor for one complete simulation run for the present model and the Donaldson models [10]. We 

here focus on the case of ξ=0 and λ=30 that requires the most computation time for the present 

simulations. It is seen from Table 1 that the models of Donaldson et al. require significantly more 

computation time as the value of Nsph is increased. In particular, in the case of Nsph=7, the simulation 

time is about 20 days and therefore this model may be scarcely practical. Although results with a 

higher degree of accuracy may be expected from a model with larger values of Nsph, from the 

viewpoint of a reasonable computation time, the model of Nsph=5 may be the most appropriate. In 

a 

b 
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contrast, our model requires only around 12 hours, which is similar to the case of Nsph=3 model. 

Hence, if we can show that our model gives rise to reasonable results with sufficient accuracy, then 

the usefulness and validity of the present steric layer model for evaluating the steric interaction 

energy will be reasonably proved. 

         

Table 6.1 CPU time required for one complete simulation run. 

  our model Nsph=3 model Nsph=5 model Nsph=7 model 

time [hour] 12 12 72 480 

 

6.6.1.3 Validity of the present steric layer model 

In the present section, we discuss the validity of the steric layer model by a comparison with the 

results obtained from Monte Carlo simulations for a 3D system in thermodynamic equilibrium.  

Figure 6.3 shows results of the orientational pair correlation function fo.c.
(e)

(r) for the 

current model and a comparison with the three models of Donaldson et al. [10] and the Monte Carlo 

simulation. It is noted that the value of fo.c.
(e)

(r) is sensitive to changes in particle orientation. Figure 

6.4 shows snapshots of the aggregate structures for qualitatively recognizing the discrepancy in the 

results of fo.c.
(e)

(r) where Fig. 6.4(a) is a snapshot for the case of the Donaldson model with Nsph=3 

and Fig. 6.4(b) is a snapshot of our model. 

We first discuss results obtained for the models by Donaldson et al. [10], shown in Fig. 

6.3(a) where it is seen that the characteristics of the curves for their models approach those of the 

Monte Carlo simulation with increasing value of Nsph. This is because the sides and corners of a 

cubic particle can be modeled to a higher degree of accuracy with increasing Nsph values. In 

particular, an improvement in the curves from Nsph=3 to Nsph=5 is remarkably significant, where the 

curve for Nsph=5 model is tending to a good agreement with the Monte Carlo simulation. From the 

characteristics of the results shown in Fig. 6.3(a), it is clear that all the curves exhibit the first 

pronounced peak at around the short distance r
*≃1.2, which implies that two neighboring particles 

are in a perfect face-to-face contact configuration. Although the remaining peaks also appear at 

positions similar to those of the Monte Carlo simulation, in the case of Nsph=3 the peaks at increasing 

distance r
*
 tend significantly lower than those for Nsph=5 and Nsph=7. The characteristics shown for 

the case of Nsph=3 quantitatively imply that other types of clusters are formed in the system in 

addition to the closely-packed clusters that are reasonably expected from the previous study in 

Chapter 4 by Monte Carlo simulations. Figure 6.4(a) shows a snapshot for the case of Nsph=3 model 

and it is seen that closely-packed clusters with face-to-face contact are formed in the lower area, 

whilst aggregates with irregular contact are observed in the upper area. From the Monte Carlo 

simulations in Chapter 4, we confirmed that this kind of large irregular cluster is not observed. 

Hence, we understand that the aggregates with irregular contact arise via an unsatisfactory modeling 
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of the edges and corners of a cube in the case of a Nsph=3 model. That is, cubes modeled with 

significantly round edges and corners give rise to the large irregular aggregate shown in Fig. 6.4(a). 

As discussed above, the curve for Nsph=5 in Fig. 6.3(a) is in good agreement with the Monte Carlo 

simulation and such irregular clusters have not been observed in snapshots similar to that in Fig. 

6.4(b) employing the present steric layer model. From these results, we may conclude from the 

models of Donaldson et al., that the models with at least Nsph=5 tend to be more accurate and obtain 

physically reasonable results for a cubic particle suspension. 

We now discuss the validity of the present steric layer model by using the results shown in 

Figs. 6.3(b) and 6.4(b). It is seen from Fig. 6.3(b) that the curve obtained from our model is in good 

agreement with that obtained for the models of Nsph=7 and Nsph=5 by Donaldson et al. Moreover, the 

agreement with the Monte Carlo model may be regarded as being sufficiently reasonable. Although 

in our cubic particle model a single cube edge is expressed with three spheres of different diameters, 

as shown in Fig. 6.1(c), the above discussion exemplifies that our approach is able to give rise to 

reasonable aggregate structures, which may be qualitatively clarified from the simulation snapshot 

shown in Fig. 6.4(b). This good agreement arises from our effective modeling whereby spherical 

particles with a relatively small diameter are arranged at the eight corners of the cube by a method 

employing inscribed spheres. Hence, although only three particles are used for expressing one cube 

edge in a similar manner to the model of Nsph=3 by Donaldson et al., our model is able to offer more 

accurate results. We now address the result of the present model shown in the snapshot Fig. 6.4(b) 

which is in good agreement with the Monte Carlo and the Donaldson et al. models of Nsph=5 and 7 

although not shown as snapshots. From Fig. 6.4(b), it is seen that, although closely-packed clusters 

are predominately observed, the large irregular aggregate clusters are not formed, which is in 

significant contrast to the snapshot shown in Fig. 6.4(a). 

From these results, we understand that the present steric layer mode is able to give rise to 

physically reasonable aggregate structures with sufficient accuracy and in satisfactorily good 

agreement with the corresponding Monte Carlo simulation. This understanding will be further 

supported from the following characteristics of the radial distribution function. 
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Fig. 6.3 The orientational correlation function fo.c.
(e)

(r
*
) for λ=30 and ξ=0 in a comparison with (a) 

three models presented by Donaldson et al. and (b) our model. 

 

 

 

 

 

 

 

 

 

Fig. 6.4 The aggregate structures for λ=30 and ξ=0 for (a) the Donaldson et al. model of Nsph =3 and 

(b) our model. 
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6.6.2 Brownian dynamics simulation with our repulsive interaction model 

In this section, we verify the validity of employing a Brownian dynamics simulation method with the 

present steric interaction model for cubic particles. We first discuss the dependence of the internal 

structure of particle aggregates on the magnetic particle-particle interaction strength λ in the absence 

of the magnetic field ξ=0. Figure 6.5 shows snapshots of particle aggregates with no applied 

magnetic field for different magnetic particle-particle interaction strengths λ. Figures 6.5(a), 6.5(b) 

and 6.5(c) are for the values λ=20, λ=25 and λ=30, respectively. For the case of λ=20 as shown in Fig. 

6.5(a), it is seen that the particles tend to form a relatively loose aggregate structure where the 

neighboring particles do not contact each other in a close face-to-face configuration. As the magnetic 

particle-particle interaction strength is increased, from λ=20 to λ=25 as shown in Fig. 6.5(b), it is 

seen that particles also tend to form loosely-packed clusters but now there is an increased number of 

constituent particles in face-to-face contact. In contrast, for the case of a strong magnetic 

particle-particle interaction strength λ=30 shown in Fig. 6.5(c), large closely-packed aggregate 

structures are formed in the system. We have already discussed that the results of the radial 

distribution function shown in Fig. 5.6 in Chapter 5, and the pair correlation function shown in Fig. 

6.3(b) are in good agreement with the corresponding Monte Carlo simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5 Dependence of the aggregate structures on the magnetic particle-particle interaction 

strengths (a) λ=20, (b) λ=25 and (c) λ=30 in no applied magnetic field ξ=0. 
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 We next discuss a phase change in the aggregate structure due to the influence of an 

external magnetic field. In Chapter 4, by means of Monte Carlo simulations, we clarified that the 

large closely-packed clusters shown in Fig. 6.5(c) are transformed into wall-like clusters due to the 

influence of a magnetic field. Therefore, we here investigate whether the same regime change occurs 

during Brownian dynamics simulations that employ our steric interaction model. Figure 6.6 shows 

snapshots of aggregate structures in the case of a strong magnetic particle-particle interaction 

strength λ=30. Figures 6.6(a) and 6.6(b) are for magnetic particle-field interaction strengths ξ=5 and 

ξ=10. It is noted that the smaller snapshot on the right-hand side is viewed from the z-axis direction 

of the external magnetic field in order to discern the aggregate structures more clearly. For the case 

of the relatively weak magnetic particle-field interaction strength of ξ=5, shown in Fig. 6.6(a), the 

closely-packed clusters are transformed into wall-like clusters. However, it is seen from the snapshot 

on the right-hand side of Fig. 6.6(a) that the small closely-packed clusters do not completely collapse. 

For the case of a strong magnetic particle-field interaction strength ξ=10, shown in Fig. 6.6(b), it is 

clearly seen that the magnetic moment of a particle tends to incline in the magnetic field direction 

and the closely-packed clusters have completely collapsed and transformed into wall-like clusters. 

This regime change is quantitatively supported by the results of the magnetization curve shown in 

Fig. 6.7, where the Langevin function is also shown for reference. In the range of ξ≲5 where the 

magnetic particle-field interaction strength is relatively weak, the magnetization curve shows smaller 

values than that of the Langevin function. This characteristic quantitatively suggested that the 

aggregate structures are not completely transformed into the wall-like clusters in this range. In 

contrast, in the range of ξ≿10 where the magnetic particle-field interaction strength is relatively 

strong, the curve exhibits larger values than that of the Langevin function. This is because the 

orientation of the magnetic moments of constituent particles in wall-like clusters is strongly 

restricted due to the magnetic interaction between the neighboring particles. That is, the 

magnetization curve is able to discern a regime change in the aggregate structures. Moreover, the 

results obtained by our model from Brownian dynamics simulations are in good agreement with the 

Monte Carlo simulations.  
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Fig. 6.6 Dependence of the aggregate structures on the magnetic particle-field interaction strength of 

(a) ξ=5 and (b) ξ=10 for the magnetic particle-particle interaction strength λ=30. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7 The normalized magnetization curve in a comparison with the Langevin function. 
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Finally, we consider the radial distribution function for a wide range of the 

non-dimensional parameters λ=0~30 and ξ=0~20 in order to quantitatively discuss the accuracy of 

the results obtained from the present steric layer model. Since the first and second peaks in the radial 

distribution function are significantly sensitive to the internal structure of aggregates, we here 

discuss these initial peaks rather than the full radial distribution function. Figure 6.8 shows the 

height of the first and second peaks where in Figs. 6.8(a) is shown the height of the initial peaks as a 

function of the magnetic particle-particle interaction strength λ for no applied magnetic field ξ=0 and 

then in Fig. 6.8(a) the peaks are shown as a function of the magnetic particle-field interaction 

strength ξ for a relatively large magnetic particle-particle interaction strength λ=30. In these figures, 

the results obtained from a corresponding Monte Carlo simulation are also shown for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8 Dependence of the first and second peak of the radial distribution function on (a) the 

magnetic particle-particle interaction strength λ and (b) the magnetic particle-field interaction 

strength ξ. 
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It is seen from Fig. 6.8(a) that the heights of the first and second peaks have a gradual 

increase with increasing magnetic particle-particle interaction strength λ until both peaks begin to 

increase more steeply in the region around λ≃26. These characteristics are in significantly good 

agreement with results from the Monte Carlo simulations that are also shown. The steep increase in 

the height of each peak arises from the formation of the closely-packed clusters shown in Fig. 6.4(b). 

This type of regime change in the internal structure of particle aggregates has already been discussed 

in Chapter 4 in regard to a Monte Carlo simulation for a suspension composed of magnetic solid 

cubic particles. An increase in the value of the first peak implies that neighboring particles tend to 

combine with each other in perfect face-to-face contact to form a cluster and the increase in the 

second peak implies the expansion of the closely-packed clusters. As previously discussed, the 

closely-packed clusters shown in Fig. 6.4(b) are transformed into wall-like clusters with increasing 

magnetic particle-field interaction strength ξ. This regime change in the aggregate structures is also 

supported by the characteristics of the first and second peaks of the radial distribution function 

shown in Fig. 6.8(b). Since stable closely-packed clusters are formed in the system in the absence of 

a magnetic field, ξ=0, it is reasonable that the heights of each peak exhibit the larger values shown in 

Figs. 6.8(a) and 6.8(b) where ξ=0. As the magnetic particle-field interaction strength is increased 

within the range 0≲ξ≲4, the closely-packed clusters are transformed into wall-like clusters. This leads 

to a decrease in the value of the two peaks because the wall-like clusters are formed with a weaker 

face-to-face contact configuration than the closely-packed clusters. For a further increase in the 

magnetic particle-field interaction strength within the range 4≲ξ≲10, the closely-packed clusters 

completely collapse and wall-like clusters expand into the whole simulation region, where the 

neighboring particles in a wall-like cluster are stably combined in an offset face-to-face 

configuration [7]. This gives rise to the slight increase in both curves with increasing magnetic 

particle-field interaction strength. In the range of ξ ≳ 10, the values of each peak remain 

approximately constant, which implies that the formation of wall-like structures is almost complete 

at ξ≃10. Moreover, it is seen that the results from the current model are in good agreement with the 

Monte Carlo simulations. 

 From the above-mentioned characteristics obtained from the radial distribution function in 

regard to the particle configuration in the aggregates, we may conclude that Brownian dynamics 

simulations employing our steric layer model are able to give rise to physically reasonable results 

with sufficient accuracy. 



95 

 

6.7 Conclusion 

In the present study, we proposed a new technique for the treatment of steric interactions between 

cubic particles and showed the validity of this interaction model by performing Brownian dynamics 

simulations for a 3D system for comparison with the corresponding Monte Carlo simulation for a 

system in thermodynamic equilibrium. The results that have been obtained here are summarized in 

the following. In our model, a cubic particle with a uniform steric layer is idealized as a 

sphere-connected model where three spheres with different diameters are used for constructing the 

geometry of a cubic particle. Each sphere is coated with a uniform steric layer and the interaction 

energy is evaluated by a summation of the interaction energy arising from the overlap of the steric 

layers of all the pairs of spheres belonging to the two particles of interest. From a comparison with 

the radial distribution function of a corresponding Monte Carlo simulation, the treatment of the steric 

interaction by the present model gives rise to physically reasonable results with sufficient accuracy. 

This clearly verifies that for Brownian dynamics simulations, the present steric layer model is a 

potential technique for expressing the steric interaction energy between cubic particles coated by a 

uniform repulsive layer. 
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Chapter 7 Magnetorheological characteristics of a cubic hematite particle 

suspension by means of Brownian dynamics simulations 

 

7.1 Introduction 

As previously mentioned in Chapter 1, the magnetorheological effect is employed in the field of 

fluid engineering in the design of mechanical devices [1-3] and in past studies, many researchers 

have addressed a suspension composed of magnetic spherical particles. Nowadays, many researchers 

are able to synthesize magnetic particles with a variety of geometric shapes which include rod-like, 

disk-like and cube-like particles [4-8]. The geometrical shape of a magnetic particle has a significant 

influence on the formation of aggregate structures and therefore a non-spherical particle or non 

axisymetric particle suspension is expected to exhibit a more complex magnetorheological effect. In 

a previous study [9], our research group treated a suspension composed of ferromagnetic rod-like 

particles in order to investigate the relationship between the magnetorheological characteristics and 

the particle aggregates by means of Monte Carlo and Brownian dynamics simulations. In Monte 

Carlo simulations, we understood that an increase in the magnetic particle-field interaction strength 

induces a significant regime change in the aggregate structure of rod-like particles. In the Brownian 

dynamics simulations, it was clarified that the magnetorheological properties are strongly dependent 

on the type of aggregate structure formed in the system.  

In the case of spherical and rod-like particles, neighboring particles in clusters contact with 

each other in a point-to-point contact configuration. In contrast, in the case of cubic particles, 

clusters are formed with a face-to-face configuration between the neighboring particles as shown in 

the previous Chapters employing Monte Carlo and Brownian dynamics simulations in a system in 

thermodynamic equilibrium. These studies clearly exemplify that cube-like particle suspensions are 

expected to have the potential to exhibit different characteristics regarding their magnetorheological 

properties in comparison with those of spherical or rod-like particles. From the viewpoint of an 

application in the field of mechanical devices such as dampers and actuators, it is significantly 

desirable to investigate the dependence of the magnetorheological properties of cubic magnetic 

particles on the regime of particle aggregates in a flow field.  

From this background, in the present study we treat a suspension composed of cubic 

magnetic particles in a simple shear flow, and investigate the relationship between the 

magnetorheological properties and the particle aggregates. In the first instance, we discuss the 

aggregation phenomena of cubic particles in a simple shear flow, and then, we elucidate the 

dependence of magnetorheological characteristics on the various factors such as the magnetic 

particle-particle interaction, the magnetic field interaction and the Peclet number. In order to 

investigate the magnetorheological effect in detail, as will be shown later, the net viscosity is 

decomposed into three viscosity components. 
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7.2 Particle model 

In the present study, we employ the simple model of cubic hematite particles shown in Fig. 7.1. The 

hematite cube with side length d, and a magnetic dipole moment m=mn is assumed to be coated by a 

uniform steric layer with a thickness δ. A simple shear flow is applied in the x-axis direction and a 

magnetic field H (H=|H|) is applied in y-axis direction.  

If the position vector of particle i is denoted by ri and the magnetic moment of particle i is 

denoted by mi=mni, then the magnetic force Fij
(m)

 and torque Tij
(m)

 due to the magnetic interaction of 

particles i and j and the magnetic torque Ti
(H)

 acting on particle i due to the applied magnetic field 

are expressed as 
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in which, tij is the unit vector denoting the direction of particle i relative to particle j, expressed as tij 

= rij / rij, where rij =ri−rj and rij=|rij|. From the non-dimensionalization procedure, we obtain two 

non-dimensional parameters λ and ξ which imply respectively the strengths of the magnetic 

particle-particle interaction and the magnetic particle-field interaction. The non-dimensional 

parameters λ and ξ are expressed as λ=μ0m
2
/(4πd

3
kT) and ξ=μ0mH/(kT), where k is the Boltzmann’s 

constant, T is the absolute temperature of the liquid and μ0 is the permeability of free space. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Particle model and the coordinate system. 
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In order to obtain a more stable dispersion, the particles suspended in a base liquid are 

generally coated by a repulsive layer such as an electric double layer or steric layer. Molecular 

dynamics and Brownian dynamics simulations can not be adequately performed unless an expression 

for the repulsive interaction between particles is known. In Chapter 6, we have proposed a 

sphere-constituted model in order to consider the repulsive interaction between cubic particles. We 

have already discussed the repulsive force Fij
(V)

 and torque Tij
(V)

 due to the overlap of the steric 

layers in Chapter 6, therefore in this chapter omit the equations for the repulsive force and torque. It 

is noted that the strength of the repulsive interaction is characterized by the non-dimensional 

parameter λV=πnsd0
2
/2, where ns is the number of surfactant molecules per unit area on the surface of 

a spherical particle and d0 is the diameter of a representative spherical particle and in the case of the 

present study, the side length d of the cubic particle is employed. 

 

7.3 Brownian dynamics simulation 

In the present study, the simulated cubic particles move with transrational and rotational Brownian 

motion in a simple shear flow U which is characterized by the angular velocity vector Ω. The 

angular velocity vector Ω and the simple shear flow U are expressed as Ω= (0, 0,  /2) and U 

=(  y, 0, 0) with the shear rate  . If the position vector of a cubic particle is r and the unit vector of 

the magnetic moment m=mn is n, then the equations of translational and rotational motion are 

expressed as the following expressions. It is noted that the components normal to the magnetic 

moment direction are represented by the subscript , and the components parallel to the magnetic 

moment direction are represented by the subscript | |. 
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in which, Δt is the time interval. F
P
 is the magnetic force acting on the cubic particle, T⊥

P
 and T||

P
 

are the torques which correspond to components perpendicular and parallel to the direction of the 

magnetic moment axis. )(1 te  and )(2 te  are orthogonal unit vectors normal to the magnetic 

moment, and T

cubeD  and R

cubeD  are the translational and rotational diffusion coefficients of the 

cubic particle. Δr
B
, Δ⊥1

B
, Δ⊥2

B
 and Δ||

B
 are the random displacements inducing the translational 

and rotational Brownian motion. 
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 From the analysis of the flow field around a cube in a simple shear flow with a sufficiently 

low Reynolds number undertaken with the commercial software ANSYS CFX, we have confirmed 

that the force acting on a cube can be regarded as the force acting on a sphere with the mean 

diameter dmean of the inscribed and the circumscribed sphere of the cube. That is, even in the 

situation of a simple shear flow, we have confirmed that the friction and diffusion coefficients of a 

cube can be expressed by the friction and diffusion coefficients of a sphere with the mean diameter 

dmean. It is noted that this approximation is not valid for simulations under a simple shear flow with a 

Reynolds number larger than unity. 

 The present physical phenomenon is governed by the four non-dimensional parameters λ, ξ, 

λV and Pe, where Pe = R

cubeD /   is the Peclet number and implies the strength of the shear flow. In 

order to discuss the magnetorheological characteristics in detail, the net viscosity 

ηyx
total

=ηyx
F
+ηyx

TH
+ηyx

FT 
is decomposed into three viscosity components ηyx

F
, ηyx

TH
 and ηyx

FT
. These 

components imply that ηyx
TH

 is the contribution to the net viscosity from the torque arising from the 

magnetic particle-field interaction, and ηyx
F
 and ηyx

FT
 are the contributions to the net viscosity from 

the force and the torque arising from the magnetic particle-particle interaction. Moreover, the net 

viscosity ηyx
total

 is defined as ηyx
total

=τyx
total

/   with the shear stress τyx
total

. The total shear stress τyx
total

 

is expressed as the sum of three components 
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in which, n0 is the particle number density, N is the number of particles, yij is the y-component of the 

relative position vector rij, Fijx
(m)

 is the x-component of the magnetic force Fij
(m)

, Tiz
(H)

 is the 

z-component of the magnetic torque Ti
(H)

 and Tijz
(m)

 is the z-component of the magnetic torque Tij
(m)

. 

In the results section, the value of each viscosity is divided by the viscosity η of the base liquid and 

the volumetric fraction V. The viscosity components ηyx
F
, ηyx

TH
 and ηyx

FT
 are calculated by using the 

shear stress of each term in Eq.(7.7). 
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7.4 Results and discussion 

7.4.1 Parameters for simulations 

Unless specifically noted, Brownian dynamics simulations were performed by employing the 

following values. The volumetric fraction of cubic particles, V, is set as V =0.05, the number of 

particles in the system, N, is N=490, the cutoff distance rcoff
*
=rcoff /d of the magnetic particle-particle 

interaction between particles is rcoff
*
=10, the thickness δ

*
=δ/d of the steric layer δ

*
=0.15, the 

non-dimensional parameter λV is λV =150. The other non-dimensional parameters λ, ξ and Pe are set 

in a range of λ=10~50, ξ=1~20, Pe=1. We employed the Lees-Edwards boundary condition. A simple 

shear flow and a magnetic field are applied in the x-axis and y-axis direction, respectively. The size 

of the simulation box (Lx, Ly, Lz) is set as Lx= 2Ly and Lx=Lz. Moreover, the time interval Δt
*
 is 

Δt
*
=0.00002, and the total number of time steps per simulation run is Ntimemx=5,000,000. We 

employed the final 50% of the simulation data for the averaging procedure. It is noted that we have 

confirmed that aggregate structures are stably formed in the system within the initial 50%. 

 From the previous studies in Chapters 4 and 6, it has been clarified that cubic particles 

aggregate to form the closely-packed clusters shown in Fig. 7.2(a), and the closely-packed clusters 

are transformed into the chain-like clusters shown in Fig. 7.2(b) and wall-like clusters shown in Fig. 

7.2(c) may arise due to the influence of the magnetic field. Hence, in the present study, we discuss 

the characteristics of the magnetorheological effects arising from the regime change in the internal 

structure of the particle aggregates. In the sections 7.4.2 and 7.4.3, we will focus on results for the 

case of λ=30 and λ=50, and Pe=1, for which a regime change significantly occurs.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 Types of clusters formed in the system: (a) closely-packed clusters, (b) chain-like clusters 

and (c) wall-like clusters. 

 

a b c 
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7.4.2 Influence of the magnetic particle-field interaction strength 

Figure 7.3 shows the snapshots for the relatively large magnetic particle-particle interaction strength 

λ=30 and Peclet number Pe=1 where Figures 7.3(a) and 7.3(b) are for the cases of the external 

magnetic particle-field interaction strength ξ=10 and ξ=20. It is noted that a smaller snapshot on the 

right-hand side shows only particles located on a certain xy-plane in order to discern the internal 

structure more clearly. Figure 7.4 shows the characteristics of the orientational distribution function. 

For the case of ξ=1, cubic particles aggregate to form the closely-packed clusters with a perfect 

face-to-face contact configuration, as shown in Fig. 7.2(a). For the case of ξ=10 shown in Fig. 7.3(a), 

the closely-packed clusters are transformed into chain-like clusters inclined in the direction of the 

flow field. The orientational characteristics of the magnetic moments of the constituent particles in 

the chain-like clusters are quantitatively evaluated by the orientational distribution function shown in 

Fig. 7.4(a). It is seen from Fig. 7.4(a) that the peak appears in the region (θ, )≃(90°, 65°) and is a 

characteristic that implies that the magnetic moments of the constituent particles incline in the flow 

field direction and away from the magnetic field direction.  

 For the case of ξ=20 shown in Fig. 7.3(b), the magnetic moments of each particle are 

strongly restricted to the magnetic field direction, and wall-like aggregate structures are formed in 

the system. From the results shown in Fig. 7.4(b), it is seen that the peak has become stronger and 

the peak position is shifted toward the region of (θ, )=(90°, 90°) with increasing magnetic 

particle-field interaction strength. This is because the magnetic moments of the constituent particles 

are significantly restricted to the magnetic field direction due to the formation of the wall-like 

clusters. In the following, we will discuss the internal structure of chain-like and wall-like clusters in 

more detail. 

 Under shear flow conditions, in the situation of a strong magnetic field, chain-like clusters 

formed in the system may exhibit the two different particle configurations shown in Fig. 7.5 where 

Fig. 7.5(a) shows a chain-like cluster (cluster 1) inclined from the magnetic field direction into the 

flow field direction and Fig. 7.5(b) shows a chain-like cluster (cluster 2) inclined from the magnetic 

field direction toward the opposite direction to the flow field. It is seen from the snapshots on the 

right-hand side of Figs. 7.3(a) and 7.3(b) that chain-like clusters based on the particle configurations 

of the cluster 1 and cluster 2 are simultaneously formed in the system. In particular, it is seen from 

the detail of the snapshot on the right-hand side of Fig. 7.3(b) that wall-like clusters are based on the 

chain-like clusters with the particle configuration of cluster 2. The formation mechanism for cluster 

1 and cluster 2 may be explained as follows. In the situation of a relatively weak magnetic field, as 

shown in Fig. 7.3(a), chain-like clusters tend to incline in the flow field direction from the magnetic 

field direction due to the influence of the shear flow. In the situation of a strong magnetic field, we 

may expect the formation of chain-like clusters where the orientation of the magnetic moments of 

the particles is strongly restricted in the magnetic field direction, as shown in Fig. 7.5. The resultant 
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magnetic force arising from the magnetic particle-particle interaction between the constituent 

particles in the cluster 1 shown in Fig. 7.5(a) acts in the opposite direction to the shear flow. In 

contrast, in the case of cluster 2 shown in Fig. 7.5(b), the resultant magnetic force acts in the same 

direction to the shear flow. Hence, when the orientation of the magnetic moments of particles is 

strongly restricted to the magnetic field direction, chain-like clusters with the particle configuration 

of the cluster 2 are stably formed in the system. We will discuss the dependence of the 

magnetorheological properties on the internal structure of particle aggregates in the following 

section.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3 Dependence of the aggregate structures on the magnetic particle-field interaction strength of 

(a) ξ=10 and (b) ξ=20 in the situation of a magnetic particle-particle interaction strength λ=30 and a 

Peclet number Pe=1. 
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Fig. 7.4 Dependence of the orientational distribution function on the magnetic particle-field 

interaction strength for ξ=10 and (b) ξ=20 in the situation of the magnetic particle-particle 

interaction strength λ=30 and the Peclet number Pe=1. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5 Two chain-like clusters, (a) cluster 1 and (b) cluster 2, in the situation of a strong magnetic 

field. 
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7.4.3 The relationship between magnetorheological effects and particle aggregates 

In this section, we discuss the effect of a difference in the internal structure of particle aggregates 

described in section 7.4.2 on the magnetorheological characteristics. Figure 7.6 shows the 

dependence of the viscosity on the magnetic particle-field interaction strength ξ for the case of a 

weak shear flow Pe=1: Figs. 7.6(a), 7.6(b) and 7.6(c) show respectively the net viscosity ηyx
total

, the 

viscosity component ηyx
TH

, and in combination the viscosity components ηyx
F
 and ηyx

FT
. Each figure 

shows results for the three cases of magnetic particle-particle interaction strength, λ=10, λ=30 and 

λ=50. 

First, we discuss results of the net viscosity shown in Fig. 7.6(a). For the case of λ=30 and 

λ=50 where there are significant aggregate structures formed in the system, it is seen that all the 

curves tend to increase with the magnetic particle-field interaction strength until around ξ≃10. 

However, the curve for λ=50 then continues to increase with increasing magnetic particle-field 

interaction strength whilst the curve for λ=30 starts to decrease significantly in the range of ξ≳10. 

The characteristic of the curve for λ=30 may imply a regime change in the aggregate structure, as 

shown in Fig. 7.3. That is, the net viscosity ηyx
total

 increases until around ξ≲10 where the chain-like 

clusters that trend to incline from the magnetic field direction toward the flow field direction are 

formed in the system, but it significantly decreases in the range of ξ≳10 where wall-like clusters are 

then formed in the system. In contrast, for the case of λ=50, particle aggregates do not transform into 

wall-like clusters due to the influence of the relatively large magnetic particle-particle interaction 

strength, even in the case of the strong magnetic particle-field interaction strength 10≲ξ≲20.  

That is, chain-like clusters that incline in the flow field direction are predominately formed in the 

system, which leads to an increase in the net viscosity. However, in the range of ξ≳20, it may be 

expected that a regime change occurs, and therefore the curve for λ=50 is expected to decrease with 

increasing magnetic field. 

Next, we focus on the three viscosity components ηyx
F
, ηyx

TH
 and ηyx

FT
 in order to elucidate 

the dependence of the internal structures of the clusters on the viscosity more clearly. In the 

following discussion, we focus only on the case of λ=30 where a significant regime change in the 

particle aggregates occurs due to the influence of the applied magnetic field.  

We first discuss the viscosity component ηyx
TH

 shown in Fig. 7.6(b). For the case of λ=30, 

it is seen from Fig. 7.6(b) that the viscosity component ηyx
TH

 shows a significantly small value in the 

range of ξ≲3. This arises because the effect of strength of the magnetic particle-particle interaction is 

more dominant than that of the magnetic particle-field interaction. That is, the torque due to the 

influence of the weak magnetic field does not significantly affect the closely-packed clusters shown 

in Fig. 7.2(a). However, as the magnetic field is increased with 3≲ξ≲10, the closely-packed clusters 

collapse and are transformed into the chain-like clusters shown in Fig. 7.3(a). The chain-like clusters 

tend to incline towards the magnetic field direction with increasing magnetic particle-field 
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interaction strength, which leads to a large resistance to the shear flow. Therefore, in the range of 3≲ξ

≲10, the viscosity component ηyx
TH

 increase with the magnetic particle-field interaction strength. As 

the interaction strength is further increased with 10≲ξ≲20, the aggregate structures are completely 

transformed into the wall-like clusters, as shown in Fig. 7.3(b). In the region of 10≲ξ≲20, since there 

is no significant change in the internal structures of the aggregates, the viscosity component ηyx
TH

 

tends to an asymptotic limit. From the above characteristics, we understand that the viscosity 

component ηyx
TH

 significantly increases during the regime change from closely-packed clusters into 

chain-like clusters that occurs due to the influence of the magnetic field. 

We next discuss results of the viscosity component ηyx
F
 shown in Fig. 7.6(c). It is seen 

from Fig. 7.6(c) that the curve for λ=30 increases with increasing magnetic particle-field interaction 

strength in the region of 1≲ξ≲5. However, in the region of 10≲ξ≲20, the viscosity component ηyx
F
 

decreases with the magnetic particle-field interaction strength, and then acquires a negative value. 

This characteristic arises from a regime change caused by the external magnetic field. That is, if the 

chain-like clusters as shown in Fig. 7.5(a) are predominately formed in the system, the resulting 

magnetic force acts in the opposite direction to the shear flow, which leads to positive values of the 

viscosity component ηyx
F
. In contrast, if the chain-like clusters as shown in Fig. 7.5(b) are 

predominately formed in the system, the resulting magnetic force acts in the same direction as the 

shear flow, and therefore the value of the viscosity component ηyx
F
 acquires negative values. Because 

wall-like clusters are based on the particle configuration of cluster 2 shown in Fig. 7.5(b), the curve 

for λ=30 tends to decrease in the range of 10≲ξ≲20 where the wall-like clusters are predominately 

formed in the system. 

We finally discuss the viscosity component ηyx
FT

 that is also shown in Fig. 7.6(c). For the 

case of λ=30, it is seen that the curve of the viscosity component ηyx
FT

 exhibits the opposite 

characteristic to that of the viscosity component ηyx
F
. That is, in the region of 3≲ξ≲5 where the 

chain-like clusters based on the particle configuration of cluster 1 are predominately formed in the 

system, the viscosity component ηyx
FT

 decreases and tends to negative values. On the other hand, in 

the range of 10≲ξ≲20 where the aggregate structures are transformed into the wall-like clusters, the 

viscosity component ηyx
FT

 increases and tends to positive values. These features may be explained as 

follows. In the case that the aggregate structures based on the cluster 1 are predominately formed in 

the system, the magnetic torque functions to accelerate the flow field, which gives rise to negative 

values of ηyx
FT

. In contrast, in the case that wall-like clusters with a particle arrangement of cluster 2 

are formed, the magnetic moment of each particle is restricted to the magnetic field direction due to 

the influence of the magnetic torque acting between neighboring particles. Hence, the magnetic 

torque gives rise to a resistance to the flow field, and therefore the viscosity component ηyx
FT

 tends to 

positive values. From these characteristics, we understand that the viscosity of a cubic particle 

suspension exhibits complex dependence on the main clusters formed in the system. Moreover, we 
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suggest that a cubic magnetic particle suspension may exhibit negative magnetorheological 

characteristics under certain conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.6 Dependence of (a) the net viscosity ηyx
total

, and the single (b) ηyx
TH

 and the combined (c) ηyx
F
 

and ηyx
FT

 viscosity components on the magnetic particle-field interaction strength ξ for the case 

Pe=1. 
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7.5 Conclusion 

In the present study, we have addressed a suspension composed of cubic hematite particles in a 

simple shear flow, and investigated the relationship between the magnetorheological characteristics 

and aggregate structures by means of Brownian dynamics simulations. Brownian dynamics 

simulations have been performed for the various cases of the magnetic particle-particle interaction 

strength, the magnetic particle-field interaction strength and the shear rate and where an external 

magnetic field was applied in a direction normal to the simple shear flow. The main results obtained 

here are summarized as follows. In a weak applied magnetic field, if the magnetic particle-particle 

interaction strength is sufficiently strong, the cubic particles tend to aggregate to form 

closely-packed clusters. As the magnetic particle-field interaction strength is increased, the 

closely-packed clusters are transformed into chain-like clusters that tend to incline from the 

magnetic field direction towards the flow field direction. As the magnetic field is further increased, 

the aggregate structures grow into wall-like structures where the orientations of the magnetic 

moments of constituent particles are strongly restricted to the magnetic field direction. If the 

predominant clusters formed in the system are chain-like clusters inclined in the flow field direction, 

the net viscosity is increased because the chain-like clusters give rise to a large resistance to the flow 

field. However, if the wall-like clusters are the predominant clusters, a force that tends to accelerate 

the flow field arises due to the characteristic of the particle arrangement in the wall-like clusters, and 

therefore the net viscosity is decreased. From these results, we conclude that the viscosity of a cubic 

particle suspension exhibits complex dependence on the regime of particle aggregates that may arise 

in the system such as the closely-packed, chain-like and the wall-like clusters. Moreover, we suggest 

that a cubic magnetic particle suspension may have negative magnetorheological characteristics 

under certain conditions. 
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Chapter 8 Summary and concluding remarks 

 

8.1 Summary of the present paper 

In the present paper, we addressed a suspension composed of magnetic particles with a cubic 

geometry and investigated the dependence of the internal structure of particle aggregates and 

rheology characteristics on the various factors such as the magnetic particle-particle interaction 

strength, the magnetic particle-field interaction strength and the volumetric fraction of particles. 

Monte Carlo simulations and Brownian dynamics simulations have been employed as simulation 

methods. The present paper consists of three pillars: (1) basic research for the application to surface 

modification technology, (2) the development of a Brownian dynamics simulation technique for a 

cubic particle suspension, and (3) basic research for the application to magnetically-controlled fluid 

devices. The main appealing points of the present paper are as follows: 

 

1. We have investigated the phase change in the aggregate structures of magnetic cubic particles 

on a material surface by means of Monte Carlo simulations.  

2. We have estimated the translational and rotational diffusion coefficients of a cube particle that 

are required for developing a new Brownian dynamics simulation method. 

3. We have elucidated the coupling characteristics of the translational and the rotational motion of 

a cube in the situation of the Reynolds number being sufficiently smaller than unity. 

4. We have proposed a new steric layer model, which is expected to obtain results with a 

reasonably high degree of accuracy with less computation time than other researchers’ models. 

5. We have developed a Brownian dynamics simulation technique for a suspension composed of 

cubic particles, which has not been presented until the present. 

6. We have elucidated the relationship between magnetorheological characteristics and aggregate 

structures of a cubic particle suspension by means of our Brownian dynamics simulation 

method.  

 

8.1.1 Summary of Chapter 2 

We investigated the aggregate structures of a suspension composed of cubic hematite particles by 

means of Monte Carlo simulations. From the viewpoint of application in the field of surface 

modification technology, we have treated a quasi-2D suspension in thermodynamic equilibrium. As 

the magnetic particle-particle interaction strength is increased, the effects of the thermal energy are 

reduced and particles tend to aggregate together. Such aggregates of cubic particles are designated as 

closely-packed clusters. An external magnetic field tends to enhance the formation of elongated 

clusters in the direction of the magnetic field. Our simulations indicate that larger closely-packed 

clusters are formed with an increasing volumetric fraction of particles. However, the internal 
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structure of the closely-packed clusters is not found to be significantly influenced by a change in the 

volumetric fraction.   

 

8.1.2 Summary of Chapter 3 

In Chapter 2, we focused on the situation where half the ensemble particles have a magnetic moment 

pointing in the upward diagonal direction relative to the material surface whilst the others point in 

the downward diagonal direction. We have expanded the study in Chapter 2 to consider a variety of 

situations of ensemble ratios in regard to the number of particles with upward and downward 

magnetic moment directions relative to the material surface. From quasi-2D Monte Carlo 

simulations, we understand that the orientation ratio of the cubic particles has a significant effect on 

the regime of the particle aggregates. That is, as the composition ratio is decreased, the size of 

closely-packed aggregates becomes smaller, and the formation of thin linear clusters tend to be 

preferred in the situation of a strong magnetic field. Furthermore, a decrease in the composition ratio 

tends to dull the occurrence of a regime change in the particle aggregates with a change in the 

magnetic particle-particle interaction strength. Hence, the composition ratio may be used as a 

technique for controlling the cluster formation and the size of closely-packed clusters of cubic 

hematite particles, even in the situation of a strong magnetic particle-field interaction strength.  

 

8.1.3 Summary of Chapter 4 

In Chapters 2 and 3, from the viewpoint of a surface modification technology, we considered a 

quasi-2D suspension in thermodynamic equilibrium in order to investigate the characteristics of 

magnetic cubic particles on a material surface. In Chapter 4, we have expanded our investigation to 

include 3D Monte Carlo simulations of a suspension of cubic hematite particles in order to discuss a 

regime change in the structure of the particle aggregates. If the magnetic particle-particle interaction 

strength is sufficiently large, closely-packed clusters are formed by a repetition and expansion of a 

basic cluster unit composed of 8 particles, which may be a strongly preferred configuration as it 

gives rise to a minimum energy. As the magnetic particle-particle interaction strength is increased, 

closely-packed clusters tend to collapse and transform into wall-like clusters that align along the 

magnetic field direction. This is because the magnetic moment of each particle has a strong tendency 

to incline towards the magnetic field direction in a strong magnetic field. An increase in the 

volumetric fraction of particles induces a regime change from thick chain-like clusters to the 

formation of wall-like clusters.   

 

8.1.4 Summary of Chapter 5 

We analyzed the flow field around a cube in a Stokes flow regime in order to estimate the diffusion 

or friction coefficients of cube-like particles that are required in order to conduct Brownian 
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dynamics simulations for a cubic particle suspension. In the situation of a uniform flow field with a 

Reynolds number sufficiently smaller than unity, the resulting force acts on the cube only in the flow 

field direction, and the resulting torque acting on the cube may be regarded as negligible. In the 

situation of a rotational flow field with a sufficiently low Reynolds number, the resulting torque acts 

on the cube only in the direction of the angular velocity of the rotational flow field, and the resulting 

force acting on the cube is negligible. These characteristics are similar to those for the case of a 

sphere in a Stokes flow. From these results, we may conclude that the diffusion or friction 

coefficients of cubic particles may be expressed by introducing a correction factor to those 

applicable for spherical particles.  

 

8.1.5 Summary of Chapter 6 

We propose a new repulsive layer model for treating the interaction between the steric layers of 

coated cubic particles. This approach is an effective technique applicable to particle-based 

simulations such as a Brownian dynamics simulation of a suspension composed of cubic particles. 

3D Brownian dynamics simulations employing this repulsive interaction model have been performed 

in order to investigate the equilibrium aggregate structures of a suspension composed of cubic 

hematite particles. From a comparison with the radial distribution function of a corresponding Monte 

Carlo simulation, the present model treatment of the steric interaction is found to give rise to 

physically reasonable results with sufficient accuracy. Hence, we have verified that the present steric 

layer model is a potential technique for expressing the steric interaction energy between cubic 

particles coated by a uniform repulsive layer. 

 

8.1.6 Summary of Chapter 7 

We treated a suspension composed of magnetic cubic particles in a simple shear flow field by means 

of Brownian dynamics simulations in order to investigate the dependence of the magnetorheological 

characteristics on the cluster formation. We assumed that an external magnetic field is applied in the 

direction normal to the simple shear flow. In a weak magnetic particle-field interaction strength, the 

cubic particles tend to aggregate to form closely-packed clusters if the magnetic particle-particle 

interaction strength is sufficiently large. As the magnetic particle-field interaction strength is 

increased, the closely-packed clusters are transformed into chain-like clusters that tend to incline 

from the magnetic field direction towards the flow field direction. The chain-like clusters give rise to 

a large resistance to the flow field, and therefore, the net viscosity is increased. As the magnetic field 

strength is further increased, wall-like clusters are formed in the system. In this situation, a force to 

accelerate the flow field arises due to the characteristic of the particle arrangement within the 

wall-like clusters and this tends to induce a decrease in the net viscosity. Hence, we understand that 

the magnetorheological properties significantly depend on the internal structure of the particle 

aggregates formed in the system. 
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8.2 Topics for future research 

In order to develop a Brownian dynamics method for a cubic particle suspension, it is required to 

solve the problem for the modeling of the repulsive layer of the coated cubic particles and clarify the 

relationship between the components of the friction or diffusion tensor. In the present paper, we have 

approached such problems and developed a Brownian dynamics simulation for a cubic particle 

suspension. Finally, based on the results obtained in the present paper, the future research direction 

of cubic magnetic particle suspensions is suggested. 

 

8.2.1 Brownian dynamics simulations on the behavior of cubic hematite particles on a 

material surface in time-dependent magnetic fields 

In the previous Chapters 2 and 3, we treated a suspension composed of cubic hematite particles on a 

material surface, and investigated a regime change in the aggregate structure by means of Monte 

Carlo simulations. In order to control the aggregate structure of cubic particles more efficiently, 

investigating the effect of time-dependent magnetic fields may be a desirable path to follow the 

investigation of the uniform magnetic field. It is possible to investigate the behavior of a cubic 

magnetic suspension in a time-changing magnetic field, such as an alternating magnetic field or a 

rotating magnetic field, by employing the Brownian dynamics method as a simulation tool. 

Petrichenko et al., [1] have conducted an experimental study regarding the swarming of hematite 

cubes in a rotating magnetic field, where they investigated the dependence of swarm size and 

angular velocity on the rotating magnetic field strength and frequency. Further simulation studies are 

required to elucidate more clearly the mechanism for the formation of particle aggregates in a 

rotating magnetic field. 

 

8.2.2 Brownian dynamics simulations on the heat production effect of a cubic 

magnetic particle suspension in an alternating and rotating magnetic field 

It is well established that magnetic particles exhibit heat generation characteristics in an alternating 

magnetic field and a rotating magnetic field. Therefore, a variety of studies regarding the potential 

application to a magnetic hyperthermia treatment have been actively conducted [2-4].  

Hyperthermia treatment is a medical therapy for killing tumor or cancer cells by means of the 

heating effect of magnetic particles. There are several simulation studies that investigate the 

relationship between the characteristics of the heating effect and the aggregate structures of magnetic 

particles in the situation of an alternating magnetic field [5-7]. However, since these studies treat a 

suspension composed of spherical particles, it may be desirable to further study suspensions of 

non-spherical particles and non-axisymetric particles such as rod-like, disk-like and cube-like 

particles. If we employ the Brownian dynamics method for a cubic particle suspension that has been 
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developed in this paper, we then have the potential to investigate the relationship between the 

heating effects and particle aggregates in an alternating and rotating magnetic field. It has been 

clarified that the aggregate structures formed in the system depend on the shape of the magnetic 

particles, and therefore it may be possible to expand on the knowledge of heat generation 

characteristics obtained from spherical particles by investigating suspensions of non-spherical 

particles.  

 

8.2.3 Developing new simulation methods for a cubic particle suspension 

It is not possible to consider Hydrodynamic interactions with the Brownian dynamics simulation 

techniques developed in this paper. In order to obtain more accurate simulation results, it may be 

required to establish more advanced simulation techniques where hydrodynamic interactions are 

taken into consideration. There are several micro-analysis simulation methods that can solve both the 

particle motion and the ambient flow field simultaneously that include the Lattice Boltzmann 

method [8-10], the multi-particle collision dynamics method [11, 12] and the dissipative particle 

dynamics method [13, 14]. In the case of a three-dimensional system, the lattice Boltzmann method 

requires a significantly high computational cost, and therefore it may be necessary to develop a 

multi-particle collision dynamics method in order to investigate a cubic particle suspension. 
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