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Abstract 

 

Image resolution, as one of the fundamental properties of an image, affects its clari-

ty and quality. In the real world, various factors such as hardware limitations and en-

vironmental noise contribute to the inevitable degradation of image quality, resulting 

in the loss of high-frequency details and texture information. To effectively address 

such issues, research on image super-resolution reconstruction has become an im-

portant topic in the fields of computer vision and image processing. Traditional super-

resolution techniques include image interpolation, edge information statistics, and 

frequency domain reconstruction. In recent years, with the breakthrough progress of 

deep learning methods in computer vision tasks, deep learning-based super-resolution 

methods have gradually become mainstream. These methods include approaches that 

use convolutional neural networks to construct mappings and methods that employ 

generative adversarial networks (GANs) to learn generated images. 

Denoising Diffusion Probabilistic Models (DDPM), as a novel image generation 

method, has shown promising results in computer graphics tasks. Recent studies indi-

cate that DDPM has surpassed traditional generative adversarial networks in various 

image processing domains. Super-resolution reconstruction is the inverse process of 

image degradation. This paper first investigates several degradation factors of images 

and employs a strategy of randomly shuffling degradation factors to construct a low-

resolution (LR) image training set that reflects real-world conditions. Building upon 

the research on the DDPM generation process and DDPM super-resolution recon-

struction model, the paper proposes a super-resolution reconstruction image pro-

cessing method based on an improved denoising diffusion probability model. This 

method enables high-definition super-resolution image reconstruction. The improve-

ment primarily focuses on noise addition methods and the introduction of Variational 

Autoencoder (VAE) and Vector Quantized VAE (VQVAE) autoencoder structures. 

Due to the large GPU memory consumption of the original DDPM model, processing 

images with resolutions above 256x256 becomes challenging. The main improvement 

in this paper involves compressing the image using the encoding module of 

VAE/VQVAE to obtain a smaller resolution latent feature variable. The compressed 

latent feature variable is then used for DDPM synthesis, and finally, the decoding
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module of VAE/VQVAE is employed to upscale the latent feature variable to gener-

ate a high-resolution image. This method addresses the difficulty of super-resolution 

reconstruction for 256x256 and 512x512 resolution high-definition images, enhancing 

the realism and intricacy of the generated images. Through experimental validation, 

our improved DDPM model demonstrates significant effectiveness in generating 

high-definition, high-quality images. We showcase the application of this improve-

ment on different datasets of degraded low-resolution facial images. Furthermore, we 

apply this technology to the field of medical imaging for the super-resolution pro-

cessing of medical pathology images, enriching high-quality, high-resolution medical 

images and making a positive contribution to the development of image generation, 

image super-resolution, image processing, and image colorization technologies. 
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Chapter 1 

Introduction  

 
1.1  Background of research 

 

Image, as a crucial carrier of digitized information in the modern era, is one of the 

key sources for humans to understand and comprehend the world. Image resolution, 

defined as the number of pixels per unit area on an image, is a fundamental property 

that serves as a vital indicator in evaluating image quality. Generally, higher image 

resolution results in richer information transfer, leading to better visual perception. 

However, various factors such as imaging environment, bandwidth limitations, and 

characteristics of light-sensitive devices can lead to natural degradation of image 

quality. This often results in acquired images having lower resolutions than the origi-

nal ones, impacting the accuracy of computer vision analysis. Thus, effective en-

hancement of spatial resolution is crucial for intelligent image processing. 

Super-resolution reconstruction technology, a fundamental task in image pro-

cessing, plays a significant role in the field of computer vision. This technology in-

volves transforming a sequence of low-resolution images with pixel values into a 

higher-resolution image through specific image processing algorithms. Essentially, it 

enlarges a low-resolution image sequence with LMxLN pixels related or complemen-

tary to the same scene by a factor of L, creating a high-resolution image with LMxLN 

resolution, this process retains the original image structure while enriching details, 

increasing image size, and supplementing high-frequency components, resulting in an 

overall clearer image, Super-resolution reconstruction technology has proven useful in 

various fields such as security surveillance, facial recognition, and medical imaging. 

In the domain of security surveillance[1], law enforcement often relies on monitor-

ing images to identify suspect's facial features, identities, or vehicle license plates. 

However, challenging conditions like adverse weather, crowded environments, and 

high human traffic can lead to unclear images, affecting visual effectiveness. Super-

resolution technology effectively aids law enforcement agencies in improving effi-

ciency under such circumstances. 

In facial recognition, issues arise when facial movement or incorrect lens focusing 

causes image blurring, rendering facial recognition algorithms ineffective. This situa-

tion hinders operations such as access control, mobile payments, and facial unlocking, 
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High-resolution images are essential to enhance the accuracy of the verification sys-

tem[2]. 

In the medical field[3], super-resolution reconstruction technology assists doctors 

in treatment by reducing misdiagnosis caused by blurry images. This, in turn, im-

proves the accuracy of disease diagnosis, aiding in the formulation of effective treat-

ment plans and holding significant value in medical research. 

However, current research on image super-resolution reconstruction technology 

faces three challenges: 

1. Image Reconstruction Model and Low-Resolution Data Set: Image reconstruc-

tion involves restoring the original image by reversing the image degradation model. 

Often, due to a relatively scarce low-resolution dataset, researchers attempt to use pri-

or information obtained during the image degradation process to restore the original 

image. However, many studies overlook external factors affecting the image degrada-

tion model, resulting in low-resolution image data with varying degradation quality. 

Some research relies on simple bicubic interpolation degradation types, which are on-

ly effective for specific bicubic degradation images[4]. To address this, reliable prior 

information about the image degradation model and the quality of low-resolution im-

ages needs to be studied to standardize the acquisition of optimal reconstruction re-

sults. 

2. Increasing Complexity with Magnification: As magnification increases, the 

complexity of the super-resolution problem also rises, at higher magnification levels, 

restoring lost scene details becomes more intricate, often leading to the recovery of 

erroneous texture information[5]. This instability makes the reconstruction of images 

exceptionally challenging, especially when high-frequency noise exists in the original 

image, many existing generative models struggle to recover lost high-frequency de-

tails, resulting in significant pixel variations and a lack of image continuity. 

3. Application to Medical Imaging: While some studies on image super-resolution 

have shown promising results in natural image datasets, the transferability of recon-

struction models to the medical field remains a challenge. Research on medical imag-

es is relatively scarce due to the difficulty in obtaining specialized medical datasets, 

unlike standardized datasets for natural images, medical institutions hold sensitive 

information in medical images, making it impractical to release them publicly. Addi-

tionally, most natural image super-resolution algorithms use color images, while 

common medical images are predominantly black and white, human visual perception 

has a strong color recognition ability, making the identification of details in black-

and-white images challenging for doctors. Therefore, employing efficient image su-
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per-resolution reconstruction algorithms for high-definition medical imaging becomes 

crucial. 

In conclusion, while image super-resolution reconstruction technology has shown 

success in various applications, addressing these challenges will contribute to its fur-

ther advancement and application in diverse fields. 

 

1.2 Existing Research 
 

Current research on super-resolution reconstruction can be categorized into tradi-

tional super-resolution methods and deep learning-based super-resolution reconstruc-

tion, traditional super-resolution methods generally exhibit comparatively lower per-

formance, but they have the advantage of faster processing speeds when it comes to 

magnification. On the other hand, approaches based on deep learning for super-

resolution reconstruction present a novel perspective and represent the primary focus 

of researchers in the current stage[6]. In our study, we particularly emphasize deep 

learning-based super-resolution reconstruction. 

The effectiveness of reconstruction in this category surpasses that of the former, 

although it requires the extraction of rich image feature maps, consequently, the train-

ing time for these networks is typically longer. 

 

1.2.1 Traditional Super-Resolution Reconstruction Research 

 

Traditional super-resolution reconstruction research is generally divided into inter-

polation methods, edge information statistical methods, and frequency domain meth-

ods. Image interpolation methods mainly involve calculating the value of an interpo-

lated pixel by considering the values of surrounding pixels in its neighborhood to en-

hance the image resolution, the three most commonly used interpolation methods are 

Nearest-neighbor interpolation, Bilinear interpolation, and Bicubic interpolation. 

Nearest-neighbor interpolation is a simple method that assigns the value of the nearest 

pixel in the original image to the interpolated pixel, while computationally simple and 

fast, this method can lead to significant distortion, blurring, and blocky artifacts in 

certain cases, resulting in suboptimal interpolation. Bilinear interpolation utilizes line-

ar interpolation in both horizontal and vertical directions among the four nearest pix-

els to obtain the value of the interpolated pixel, this method produces smoother imag-

es compared to nearest-neighbor interpolation but still exhibits some artifacts. Bicubic 

interpolation, more complex than the previous two methods, uses the values of 16 sur-

rounding pixels to perform cubic interpolation. Although computationally more de-
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manding, bicubic interpolation yields better results and is more widely applicable. Li 

and Orchard[13] proposed a directional interpolation algorithm tailored to the edges 

of natural images, emphasizing the adaptive edge orientation property based on covar-

iance, allowing adjustment of interpolation coefficients to match any direction of step 

edges. In literature [8], various interpolation techniques were employed to reconstruct 

high-resolution MR brain images from low-resolution MR brain images acquired in 

axial, sagittal, and coronal directions. 

Edge information statistical methods: Example-based methods involve learning the 

mapping relationship from low resolution to high resolution by using pairs of high 

and low-resolution images in a training dataset, once the learning process is complete, 

similar mappings can be applied to new low-resolution images. Stevenson et al[8]. 

proposed using this algorithm for image super-resolution reconstruction in 1996. This 

method transformed super-resolution reconstruction into a parameter estimation prob-

lem, analyzing spatial and temporal information in short image sequences for recon-

struction, optimizing noise and improving image quality. 

Frequency domain-based reconstruction methods involve transforming low-

resolution images into the frequency domain using Fourier transform, adding missing 

high-frequency information during this process to enhance resolution. Finally, the im-

age is restored to the spatial domain through inverse Fourier transform. Huang[9] and 

others in 1980 initially proposed a frequency domain method for motion images, the 

principle involves performing Fourier transform on the original image, obtaining the 

HR reconstruction image spectrum by blending the spectra of multiple LR original 

images, and finally reconstructing the HR image by inverse discrete Fourier transform. 

Subsequently, in 1984[10], a frequency domain condition-based super-resolution 

technique was introduced, combining relationships between multiple low-resolution 

images and utilizing the properties of Fourier transform to derive a complex mapping 

relationship between two images, ultimately reconstructing the image. 

 

1.2.2 Research on Deep Learning Super-Resolution Recon-
struction 
 

The traditional methods mentioned above model noise and blur using mathematical 

formulas, solving the inverse process of these formulas to obtain clear images. In re-

cent years, breakthroughs in super-resolution reconstruction technology have been 

achieved in computer vision through the use of deep learning techniques, such as 

Generative Adversarial Networks (GANs) [11] and Variational Autoencoders (VAEs) 
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[12], owing to their powerful representation capabilities and nonlinear modeling abili-

ties. 

Deep neural networks, known for their effective extraction of local image features 

and efficient processing of high-dimensional images, have found widespread applica-

tions in computer vision and image processing. Convolutional neural networks 

(CNNs) can effectively extract high-frequency features from low-resolution images, 

enabling end-to-end mapping from low to high resolution, addressing challenges 

faced by traditional methods in accurately extracting and mapping features, deep 

learning super-resolution techniques are mainly divided into two research directions: 

constructing mappings and learning image features through convolutional neural net-

works, and generating transformations based on image conditions[14], the super-

resolution reconstruction technique studied in this paper falls into the latter category. 

Dong et al[15]. introduced an innovative approach for deep convolutional super-

resolution image reconstruction in their research, the method utilizes a three-layer 

convolutional neural network designed for synthesizing super-resolution images 

through a feedforward Super-Resolution Convolutional Neural Network (SRCNN), 

the input low-resolution image is upsampled to the target image size using bicubic 

interpolation and subsequently passes through three convolutional layers: feature ex-

traction layer, nonlinear mapping layer, and reconstruction layer. Training the three-

layer convolutional network allows it to learn complex mapping relationships between 

images, producing the final reconstructed image as output. While this method uses 

SRCNN to extract crucial features from low-resolution images and enhances resolu-

tion through bicubic interpolation, the authors acknowledge its high computational 

complexity and slow convergence speed. Subsequent literature[16] improved upon 

this by incorporating deconvolution for upsampling operations, allowing the network 

to directly input low-resolution images without the need for interpolation enlargement. 

This modification uses smaller convolutional kernels to expedite network speed and 

introduces a local feedback mechanism to enhance model performance, aiding in bet-

ter learning of image details. Kim et al[17]. constructed a deeper convolutional neural 

network for feature extraction, incorporating an interpolation method in the prepro-

cessing stage, residual learning was also employed to mitigate the slow convergence 

and gradient vanishing issues. However, the increase in the number of network layers 

results in a higher parameter count and model complexity, leading to problems such 

as overfitting during training. For medical CT images, Styner et al[18]. proposed a 

sparse coding super-resolution method, significantly improving the visual quality and 

objective evaluation metrics of CT images using sparse representation techniques, ef-
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fectively recovering high-resolution images from low-dimensional image representa-

tions. 

In recent years, with the rapid development of Generative Adversarial Networks 

(GANs) composed of generators and discriminators, some researchers have ap-

proached super-resolution reconstruction as an image-to-image translation problem, 

this perspective has led to new developments in image super-resolution as a branch of 

image restoration technology, resulting in many classic works based on Generative 

Adversarial Networks (GANs). 

Ledig et al[19]. first proposed a Super-Resolution Generative Adversarial Network 

(SRGAN), marking a groundbreaking application of GANs in SR technology, this 

method effectively handles the phenomenon of image edge smoothing under larger 

magnification factors, resulting in richer high-frequency details. Although the numer-

ical performance of this method in terms of objective evaluation metrics, such as Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM), may not be satisfac-

tory, the visually improved quality of the reconstructed high-resolution images is evi-

dent. Wang et al[20]. (ESRGAN) enhanced the Super-Resolution Generative Adver-

sarial Network (SRGAN) by introducing a more advanced architecture, they replaced 

the residual blocks in the original generator with residual dense blocks after each con-

volutional layer, and further improved the quality of the reconstructed images by us-

ing a relative discriminator. However, GAN-based super-resolution image reconstruc-

tion methods have stringent Nash equilibrium conditions, requiring precise adjustment 

of parameters and learning rates during image synthesis[21]. They also suffer from 

problems such as gradient explosions, mode collapse, and the generation of artifacts. 

While generating networks can smooth out generated images, they may fail to pre-

serve fine details, occasionally resulting in artifacts. Based on the current research sta-

tus, we explored the latest denoising diffusion generative models. 

 

1.3 Research Objectives 
 

The primary focus of this paper is on image processing based on the improved de-

noising diffusion probability model, with a particular emphasis on its application in 

super-resolution reconstruction techniques. Drawing upon a wealth of literature on 

generative model algorithms and super-resolution reconstruction algorithms, which 

are well-established for natural images, several limitations of existing research: 

1. Previous studies primarily target specific types of image degradation, whereas real-

world scenarios involve multiple degradation processes, this research delves into the 

inverse process of super-resolution, studying the degradation and deterioration of im-
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ages caused by blur, downsampling, and noise. Unlike previous studies that often rely 

on simplistic degradation types obtained through bicubic interpolation, this study 

adopts a more realistic approach by considering a variety of degradation factors and 

employs a strategy of randomly mixing degradation to acquire the required low-

resolution dataset. 

2. Recent advancements in denoising diffusion probability networks (DDPM) have 

shown promising capabilities in generating realistic texture features in images, while 

DDPM has outperformed traditional generative adversarial networks in various syn-

thesis tasks such as image synthesis, translation, restoration, and colorization. 

3. The original DDPM model has limitations in handling high-resolution images due 

to its large model parameter size, high GPU memory consumption, and long inference 

times. Moreover, its application in medical image research remains underdeveloped. 

Based on the research on diffusion probability generative models and diffusion 

probability super-resolution models, this paper proposes an improved denoising diffu-

sion super-resolution reconstruction model by introducing latent variables as an in-

termediate bridge during the reconstruction process. During the forward diffusion 

process, similar to the original DDPM model, the input high-resolution image is trans-

formed into latent variables Z via a feature decoder. These latent variables Z undergo 

T iterations of Gaussian noise injection, resulting in a Gaussian noise distribution. 

Due to the necessity of constraining the solution space of high-resolution (HR) images 

in super-resolution reconstruction, during the forward process, the low-resolution im-

age (LR) and the noise image of the current HR latent variables are stacked together 

for conditional sampling. Subsequently, the powerful parameter fitting capability of 

the UNet within the diffusion denoising probability model is utilized to fit the condi-

tional feature update model. In the backward derivation process, the model combines 

the low-resolution image as a guiding condition with random Gaussian noise, refining 

the noise through iterative inverse processes. The random Gaussian noise is gradually 

transformed into a distribution similar to that of the high-resolution image latent vari-

able data distribution. Finally, the latent feature variables are elevated to a distribution 

similar to that of the original generated image using the decoding module of 

VAE/VQVAE, achieving the reconstruction of high-resolution images, this results in 

more natural-looking generated images. 

By improving the noise schedule timetable and introducing cosine time step control 

during the iteration process, the noise distribution becomes more uniform, ensuring 

more stable diffusion. The improved latent variable autoencoder DDPM, compared to 

the original model, features a reduced parameter count, saving GPU memory and re-

ducing inference time. It addresses issues such as the single degradation of low-
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resolution dataset images and problems encountered in traditional generative adver-

sarial networks (GAN), such as gradient explosion and mode collapse during synthe-

sis. Additionally, the generated images from the improved model exhibit greater natu-

ralness, and the high-resolution images reconstructed by VQVAE-DDPM are clearer. 

Furthermore, the technology is applied to the medical imaging domain for studying 

multi-class texture pathology images of colorectal cancer, enriching the availability of 

high-quality, high-resolution medical images, it addresses common issues in medical 

image datasets, such as small sample sizes, unclear textures, and inconsistent sizes. 

Finally, the model is applied to other tasks, such as image colorization, demonstrating 

its advanced performance in image coloring tasks through comparative experiments. 

Therefore, the enhanced denoising diffusion probability model holds significant aca-

demic value and research significance in fields such as facial recognition, medical im-

age super-resolution reconstruction, dataset augmentation, and image colorization. 
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Chapter 2 

Prior research 

  
2.1    Image Quality Degradation 
 

In the process of single-image super-resolution reconstruction, obtaining the true 

corresponding low-resolution data is challenging due to the uncertainty in its collec-

tion. Therefore, in deep learning, to ensure consistency in learning, it is necessary to 

establish a one-to-one correspondence between low-resolution image data and its 

high-resolution counterparts. The traditional approach often involves downsampling 

the high-resolution images to low resolution, defining this process as an image quality 

degradation process. Subsequently, by utilizing the mapping relationship between 

high-resolution and low-resolution images, the corresponding high-resolution images 

are reconstructed. Hence, the quality of image degradation directly affects the quality 

of the low-resolution dataset. Based on literature review, we believe that in the actual 

image sampling process, blur, downsampling, and noise are three key factors leading 

to real image degradation. Therefore, from a mathematical perspective, we define the 

image quality degradation model as the process of downsampling a high-resolution 

image to a low-resolution image, expressed as follows: 

 

                                                 𝑦 = (𝑥⊗  𝑘) ↓𝑠+ 𝑛                          (2.1) 

 

From the above formula, it can be inferred that the low-resolution (LR) image is 

obtained by convolving the high-resolution (HR) image with an isotropic/anisotropic 

Gaussian kernel (or point spread function) 𝑘 to produce a blurred image 𝑥 ⊗  𝑘. Sub-

sequently, downsampling operation ↓s is applied with a scaling factor s, and white 

Gaussian noise 𝑁 with a standard deviation of 𝜎 is added. 
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Figure 2.1: Image degradation and super-resolution reconstruction process 

This allows us to approximate the high-resolution image after the aforementioned 

real degradation as a low-resolution image. Figure 2.1 illustrates a schematic diagram 

of the image degradation and reconstruction process. From the diagram, it can be ob-

served that the image degradation and reconstruction processes are mutually inverse, 

the objective of super-resolution reconstruction is to determine the inverse pro-

cess𝑓−1of the degradation[22]. 

Specifically, blur is achieved through two convolutions with isotropic and aniso-

tropic Gaussian kernels, as illustrated in Figure 2.2 common downsampling methods 

include bilinear and bicubic interpolation, as shown in Figure 2.3 There are various 

types of noise, mainly categorized into Gaussian white noise 𝑁𝐺  at different noise 

levels and JPEG compression noise 𝑁𝐽𝑃𝐸𝐺 , as shown in Figure 2.4. Additionally, 

there are additive noises such as camera sensor noise 𝑁𝑆, (This camera sensor noise is 

simulated by the reverse-forward image signal processing (ISP) [23]pipeline model 

and RAW image noise model, because there are too many factors influencing image 

quality degradation in the real world, it is not feasible to exhaustively enumerate all 

possible combinations. Additionally, this paper primarily focuses on super-resolution 

models rather than image degradation models. Therefore, we simplify our study by 

investigating only three degradation factors and adopting the degradation combination 

strategy from the referenced paper[24], this research employs a strategy of randomly 

shuffling the aforementioned degradation factors, aiming to cover the degradation 

space of real images for synthesizing low-resolution (LR) images, for experimental 
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simplicity, we omit additive noises such as camera sensor noise from the original deg-

radation model. 

 

 

 

 

 

 

 

 

 

Figure 2.2:  The results of blurring with isotropic and anisotropic gaussian kernels 

 

 

 

 

 

 

 

 

 

Figure 2.3:  The results of different downsampling methods 

 

 

 

 

 

 

 

 

 

Figure 2.4:  The results of Gaussian white noise 𝑁𝐺 at different noise levels and JPEG compression 

noise 𝑁𝐽𝑃𝐸𝐺 . 
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2.2    Variable auto-encoder 
 

2.2.1 Introduction to Variational Autoencoder Model 
 

The autoencoder (AE) [25] is a type of neural network model designed to learn or 

encode low-dimensional representations of high-dimensional data, such as images or 

text, autoencoder models find widespread applications in areas like dimensionality 

reduction and feature extraction. The structure of an autoencoder includes an encoder 

and a decoder: the encoder takes the input image, learns its latent features, and the 

decoder reconstructs the image from those features, by constraining the output image 

to be consistent with the input image, the autoencoder model achieves compression of 

information, with the dimensionality of the latent space being smaller than that of the 

input image. However, this model does not model the distribution of variables in the 

latent space and cannot generate new samples by sampling in the latent space, making 

it not a generative model. In 2013, Kingma and Welling extended the autoencoder and 

introduced the Variational Autoencoder (VAE) model[12], the introduction of the 

VAE model propelled the development of generative models, the VAE uses variation-

al inference, training an autoencoder with a regularized latent variable space to com-

press high-dimensional data into a latent variable space representation vector.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Variational autoencoder encoder-decoder framework 

 

The VAE model is structurally similar to the autoencoder, as shown in Figure 2.5, 

and primarily consists of an encoder generative network 𝑝𝜃(𝑥|𝑧)，and an approxi-

mate inference network or decoder 𝑞∅(𝑥|𝑧). The encoder transforms images into the 

latent space representation, and the decoder transforms the representation in the latent 

space back into the image space. During training, the latent space is subjected to KL 
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divergence constraints to make the latent space variables follow a Gaussian distribu-

tion. In the generation phase, new images can be generated by first sampling from the 

Gaussian distribution in the latent space and then inputting the sampled latent varia-

bles into the decoder. 

The variational autoencoder has demonstrated its effectiveness in generating vari-

ous complex data, including handwritten digits, facial images, house numbers, CIFAR 

images, and physical model segmentation of scenes. However, the network also has 

limitations, due to the limited expressive capacity of the inference model, the noise 

introduced during sampling, and the use of a flawed pixel-level loss function (such as 

the Mean Squared Error (MSE) loss function), the generated images tend to be rela-

tively blurry. 

 

2.2.2 Variational Inference in the Variational Autoencoder 
Model 
 

The Variational Autoencoder introduces the variational inference algorithm, where 

the main idea is to transform inference into an optimization problem, the specific ap-

proach involves sampling from an approximating distribution 𝑞∗(𝑧) derived from a 

tractable Gaussian distribution that can often be probabilistically decomposed, this is 

achieved by maximizing the variational lower bound of the log-likelihood function, 

aiming to approximate the true posterior distribution 𝑝(𝑧|𝑥), this is mathematically 

expressed as: 

                                              𝑞∗(𝑧) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑞(𝑧)𝜖𝑄

𝐾𝐿(𝑞(𝑧)‖𝑝(𝑧|𝑥))                (2.2) 

 

where 𝐾𝐿 denotes the Kullback-Leibler divergence (or divergence), defined as: 

                                    𝐾𝐿(𝑞(𝑧)‖𝑝(𝑧|𝑥)) = ∫𝑞(𝑧) log
𝑞(𝑧)

𝑝(𝑧|𝑥) 𝑑𝑧                                (2.3) 

 

Here, 𝑞(𝑧) represents the distribution of the latent variable z, and 𝑝(𝑧|𝑥) follows 

the normal distribution 𝑁(0,1). In information theory, the KL divergence function is 

used to measure the information difference contained in two distributions, the objec-

tive is to minimize the 𝐾𝐿 distance between the approximating distribution and the 

true distribution 𝑝(𝑧|𝑥). Therefore, we define the distribution generated by the VAE 

model as 𝐿𝑉𝐴𝐸(𝜙, 𝜃; 𝑥
𝑖) according to (2.2). 
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𝐿𝑉𝐴𝐸(𝜙, 𝜃; 𝑥
𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝑞(𝑧)𝜖𝑄

(𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑞𝑥(𝑧) − 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)
) 

 

            = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑞(𝑧)𝜖𝑄

(𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑞𝑥(𝑧) − 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑧)) − 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥|𝑧)) +

       𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥)))                                                (2.4) 

 

The term 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥))  is a constant.  

 

   𝐿𝑉𝐴𝐸(𝜙, 𝜃; 𝑥
𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝑞(𝑧)𝜖𝑄

(𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥|𝑧)) − 𝐷𝐾𝐿(𝑞𝑥(𝑧|𝑥
𝑖)‖𝑝𝜃(𝑧|𝑥

𝑖)))                                      

 

                                                                 (2.5) 

On the other hand, the variational autoencoder belongs to the category of typical la-

tent variable generative models 𝑝(𝑥|𝑧), Its objective function is equivalent to maxim-

izing the Evidence Lower Bound (ELBO) of the log-likelihood of the data, given the 

prior 𝑃(𝜔), the data distribution 𝑃(𝑥) can be obtained through integration: 

 

                                       𝑃(𝑥) = ∫𝑝(𝑥|𝑧)𝑃(𝜔)𝑑𝜔                                              (2.6) 

 

During inference, the posterior distribution log 𝑝(𝑥)  is obtained through Bayes' 

rule: 

                                             𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑃(𝜔)

∫𝑝(𝑥|𝑧)𝑃(𝜔)𝑑𝜔
                      (2.7) 

 

Using maximum log-likelihood estimation involves optimizing the log-likelihood 

function with respect to the dataset 𝑋. Thus, the log-likelihood function for the entire 

dataset is obtained by summing up the log-likelihood functions for each correspond-

ing sample: 

                                         log 𝑝𝜃(𝑥
1, 𝑥2, ⋯ 𝑥𝑛)=∑ log 𝑝𝜃 (𝑥

(𝑖))𝑁
𝑖=1                (2.8) 

 

For an individual sample data: 

 

                    log 𝑝𝜃 (𝑥
𝑖) = 𝐿(𝜙, 𝜃; 𝑥𝑖) + 𝐷𝐾𝐿(𝑞𝑥(𝑧|𝑥

𝑖)‖𝑝𝜃(𝑧|𝑥
𝑖))              (2.9) 
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Where the first term on the right side is the Evidence Lower Bound (ELBO) [26] of 

the log-likelihood function, and the second term is the Kullback-Leibler (KL) [27]  

divergence between the approximate posterior probability and the true posterior prob-

ability, this term is non-negative: 

log 𝑝𝜃 (𝑥
𝑖) ≥ 𝐿(𝜙, 𝜃; 𝑥𝑖) = 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥|𝑧)) − 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑞(𝑥|𝑧))                 (2.10) 

              𝐿(𝜙, 𝜃; 𝑥𝑖) = 𝐸𝑧~𝑞𝑥(𝑙𝑜𝑔𝑝(𝑥|𝑧)) − 𝐷𝐾𝐿(𝑞𝑥(𝑧|𝑥
𝑖)‖𝑝𝜃(𝑧|𝑥

𝑖))          (2.11) 

 

The final objective formula for VAE using standard gradient optimization and repa-

rameterization techniques is： 

𝐿𝑉𝐴𝐸(𝜙, 𝜃; 𝑥
𝑖)=𝑎𝑟𝑔min

𝜃,𝜙
[|𝜇𝜃(𝑧) − 𝑥|

2 + 0.5∑ 𝜎𝜙
2(𝑥)𝑗 + 𝜇𝜙

2(𝑥)𝑗 −
dim (𝑧)
𝑗=1

                                    𝑙𝑜𝑔𝜎𝜙
2(𝑥)𝑗]                                                                                      (2.12) 

 

2.3    Vector quantization auto-encoder 
 

Vector Quantization (VQ) is a method for signal compression, the basic idea is to 

organize several scalar data into a vector and then quantize the entire vector space as a 

whole, this approach enables data compression without losing important information. 

In practice, VQ exhibits high compression rates and good visual quality in image pro-

cessing. While Variational Autoencoders (VAE) are constrained by the assumption of 

Gaussian distribution modeling, real-world data distributions may be more complex. 

Therefore, inspired by Vector Quantization, DeepMind[28] introduced a novel dis-

crete variational autoencoder generative model called VQ-VAE, building upon the 

foundation of VAE. VQ-VAE introduces the concept of vector quantization by discre-

tizing the continuous vectors in the latent space into discrete encoding vectors, this 

not only shares similarities with continuous latent variable VAE models but also of-

fers the flexibility of a discrete distribution. 

 

 

 

 

 

 

 

 

Figure 2.6: Vector quantization variational autoencoder encoder-decoder framework 
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The structure of VQ-VAE is still based on the encoder-decoder framework, as 

shown in Figure 2.6, the original image 𝑋 passes through the convolutional layers in 

the encoder to obtain a continuous encoding vector 𝑍𝑒(𝑋) with a size of 𝐿 ×𝑊 × 𝐷, 

between the encoder and the decoder, there is a component called the VQ layer, 

which is responsible for discretizing the latent variables, the VQ layer includes an 

embedding dictionary module, where the embedding dictionary re-encodes the con-

tinuous latent variables output by the encoder. It quantizes the continuous vector in 

the latent space of the encoder's output by mapping it to the nearest embedding in the 

embedding dictionary. These encoding vectors are often learned atomic vectors 

(e.g.cluster centers) from the training data, each denoted as 𝑒𝑖 which is a vector of 

size D. Subsequently, VQ-VAE performs a nearest-neighbor search to map 𝑍𝑒 to one 

of these 𝑋 vectors: 

                                          𝑍 → 𝑒𝑥,k= arg𝑚𝑖𝑛‖𝑍 − 𝑒𝑗‖2                                           (2.13) 

The embedding corresponding to 𝑍𝑒 is denoted as 𝑒𝑒𝑚𝑏 (final encoding result), and 

these embeddings 𝑍𝑞 are then fed into the decoder network for decoding, By combin-

ing information from VAE with discretized latent variables, VQ-VAE demonstrates 

powerful potential in neural network learning. The advantage of VQ-VAE lies in the 

fact that while the encoder's latent variables in VAE are continuous. The latter outputs 

discrete variables, by enforcing the discretization of the encoding in the latent space, 

it becomes a representative vector from a finite set, achieving vector quantization, this 

helps reduce the dimensionality of the latent space, improve training efficiency, and 

prevent posterior collapse. 

 
2.4    Generative Adversarial Network (GAN) Model 
 
2.4.1 Introduction to Generative Adversarial Network (GAN) 
Model 
 

In the realm of image generation models, a classic work is the Generative Adver-

sarial Network (GAN), first introduced by Ian Goodfellow in 2014, this deep learning 

generative model immediately drew widespread attention in the academic community. 

GANs are capable of generating data in the form of one-dimensional signals, two-

dimensional matrices, or three-dimensional images, with a focus on image data in this 

example. 

A Generative Adversarial Network is composed of a generative model and a dis-

criminative model, as shown in Figure 2.7. the generative model learns the distribu-
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tion of real data, while the discriminative model is a binary classifier responsible for 

distinguishing whether the input is real or generated data, Both real and generated da-

ta are fed into the discriminative model 𝐷, which outputs the corresponding classifi-

cation. In the original GAN framework, the generator network employs a U-Net archi-

tecture consisting of an encoder and a decoder. This structure comprises downsam-

pling convolutional modules, a bridging module, and upsampling convolutional mod-

ules. The 𝐷 is discriminative model, being a binary classifier, is trained using binary 

cross-entropy loss to control the content generated by the network, for real images, 

the given label is 1, while for generated images, the given label is 0. The generative 

model 𝐺 attempts to synthesize images in a way that the discriminative model 𝐷 is 

inclined to classify them as genuine. Assuming 𝑥 represents real data following the 

distribution 𝑃𝑟(𝑥), 𝑃𝑔 denotes the data distribution of generated images 𝐺(𝑧), and 𝑃𝑧 

represents the prior distribution of random noise vector 𝑧 with 𝑁(0,1). The generator 

network and the discriminator network are denoted as 𝐺 and 𝐷, respectively, where 𝐷 

can be regarded as a binary classifier. Using the cross-entropy loss function, the opti-

mization objective of the Generative Adversarial Network (GAN) can be expressed as 

follows: 

 

 

Figure 2.7: Generative adversarial network framework 

 

             min
𝐺
max
𝐷
=𝐸𝑥 ~ 𝑃𝑟

[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑥 ~ 𝑃𝑧 [log (1 − 𝐷(𝐺(𝑧)))]          (2.14)   

  

The Generative Adversarial Network operates through a mechanism akin to a Max-

Min game, alternately optimizing the generator network 𝐺 and the discriminator net-

work 𝐷 until they reach a Nash equilibrium point. As the alternating optimization 

proceeds, the discriminator network 𝐷 gradually approaches the optimal discriminator. 
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When this approximation reaches a certain level, the optimization objective of the 

Generative Adversarial Network is approximately equivalent to minimizing the Jen-

sen-Shannon Divergence (JS divergence) [29] between the data distributions of real 

and generated images. In brief, it is equivalent to optimizing the distribution distance 

between real and generated data. 

 

2.4.2 Some drawbacks of Generative Adversarial Networks 
(GANs) 

 

Generative Adversarial Networks (GANs) can produce realistic high-quality imag-

es, but they may face issues such as mode collapse and convergence difficulties. This 

is because the natural data distribution is highly complex and multimodal, meaning 

there are many "peaks" or "modes" in the data distribution, each mode represents sim-

ilar data samples distinct from other modes, mode collapse occurs when the generated 

samples lack diversity, and the generator believes it can deceive the discriminator by 

focusing on a single mode. In other words, the generator only produces samples from 

that specific mode, the discriminator eventually identifies the samples from this mode 

as fake, prompting the generator to switch to another mode, this cycle repeats, funda-

mentally limiting the diversity of samples generated by the GAN. 

Moreover, GANs face challenges in training and slow convergence, GAN training 

is relatively difficult because the balance between the two networks is a continuous 

competition in a high-dimensional parameter space to achieve a Nash equilibrium. 

Finding a Nash equilibrium in this continuous high-dimensional space is challenging, 

Gradient descent algorithms are commonly used in current research to optimize the 

GAN's objective function, aiming to minimize the loss function rather than engaging 

in the competitive game of finding a true Nash equilibrium in simulated space. The 

objective function is non-convex, and achieving a true Nash equilibrium in the con-

tinuous high-dimensional parameter space is challenging, in practical GAN training, 

the limited fitting capacity of the generator and discriminator, coupled with the inabil-

ity to guarantee optimal optimization during iterative training, prevents GANs from 

reaching a true Nash equilibrium state, this can lead to problems such as vanishing or 

exploding gradients and oscillations, resulting in slow or non-convergent model train-

ing. 

Furthermore, GANs lack explicit inference capabilities and cannot directly extract 

the probability density of the data from the model, this might necessitate the use of 

other generative models, such as Variational Autoencoders (VAEs), to achieve more 

intuitive probability density estimation. 
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2.5    Denoising diffusion probability model  
 

2.5.1 Introduction to Denoising diffusion probability model 
 

In 2015, Jascha Sohl-Dickstein, Eric, and others proposed the Probability Diffusion 

Model (DPM)[30], abbreviated as Diffusion Model (DM), the inspiration for this 

model came from non-equilibrium statistical physics. Similar to other generative 

models, the diffusion model synthesizes images by learning the distribution of images 

in the training dataset, the forward process involves gradually adding noise to a nor-

mal image, analogous to dropping ink into a cup of water. Over time, the ink diffuses 

throughout, eventually uniformly distributing in the solution, resulting in a murky wa-

ter cup, this diffusion process is one reason why the model is called a diffusion model. 

If the positions, movement speeds, and directional properties of pigment molecules 

are recorded during the diffusion process, it becomes possible to infer the dropping 

positions of pigments in a cup of dissolved water. In 2020, Jonathan Ho and others 

[31] proposed improvements to the original diffusion probability model's mathemati-

cal calculation methods and introduced the concept of Denoising Diffusion Probabil-

ity Model (DDPM), this model demonstrated improved performance in image synthe-

sis by providing a complete strategy for adding noise and denoising, and it was ap-

plied in the field of image synthesis. 

DDPM comprises a forward noisy diffusion Markov process and a backward de-

noising Markov process. By learning the Markov chain, the model ensures that real 

images, after 𝑇  steps of noise addition, conform to a Gaussian noise distribution. 

Conversely, the backward denoising process optimizes the distance between generat-

ed data and the real data distribution through the learning of a U-net network. By iter-

atively denoising for 𝑇 steps, useful samples resembling the real data distribution can 

be generated. 

The detailed derivation process of the denoising diffusion probability model is ex-

plained in Chapter 3 of this paper. Subsequent research based on DDPM has propelled 

its development, for instance, Guided Diffusion introduced a classifier to guide the 

DDPM sampling process, achieving good results in unconditional image generation 

and category-based image generation. Classifier-Free Diffusion ingeniously proposed 

how to generate high-quality diverse images without utilizing a classifier. Further im-

provements, such as the application of denoising diffusion models in image super-

resolution reconstruction models, have been explored, the fourth chapter of this paper 

builds on this research, presenting an improved denoising super-resolution diffusion 
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model that outperforms previous simple denoising diffusion models in terms of per-

formance and applicability. 

Research[32] indicates that DDPM has surpassed traditional Generative Adversari-

al Networks (GANs) in the field of synthesis, numerous studies[33-35]  demonstrate 

the outstanding performance of denoising diffusion probability models in uncondi-

tional and conditional image generation, serving as a promising approach in tasks 

such as image synthesis, translation, restoration, coloring, composition, and speech 

synthesis. Therefore, as a novel image generation method, DDPM has shown remark-

able success in the field of computer vision. 

  
2.5.2 Introduction to Some Application Areas of Denoising Dif-
fusion Probability Model (DDPM) 
 

Figure 2.8 shows an award-winning artwork named "Théâtre D'opéra Spatial" 

(French for "Spatial Opera Theater"), created by the generative AI platform Midjour-

ney (based on the denoising diffusion probability model) under the guidance of Jason 

Michael Allen[36], this image won the 2022 Annual Art Competition at the Colorado 

State Fair, using DDPM. The artwork breaks the dimensions of traditional image con-

struction, describing a Renaissance-era space opera theater by adding keywords like 

"grand" and "luxurious", the painting is a combination of steampunk and surrealism. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8:   Based on the denoising diffusion probability model, the award-winning work synthesizes a 

space opera theater. 

 

Figure 2.9 represents an experimental application case conducted beyond the scope 

of this paper, it involves using the denoising diffusion probability network to generate 



 

21 

 

cartoon images of real faces based on prompts. The model employs techniques such 

as connecting text and images and conditional diffusion, the left side shows a real per-

son's image, and the right side displays the final generated cartoon image. Due to the 

complexity of the network, which involves text embedding, detailed explanations are 

not provided here. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9:  Connecting text and images" and "diffusion technology" are applied to generate cartoon 

images based on prompt words 
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Chapter 3 

DDPM Generation Process and 

DDPM Super-Resolution Princi-

ples 

 
3.1    DDPM Generation Process 
 

DDPM (Denosing Diffusion Probabilistic Models) generation process consists of a 

forward process and a backward process, both of which can be viewed as parameter-

ized Markov chains, the entire model training process is illustrated in Figure 3.1. In 

the forward process of the DDPM image, the initial image is first subjected to noise 

using a pre-defined noise scheduling timetable, according to the formula, the image 

after noise at a certain moment is determined, and the time T of that moment is rec-

orded, the gradient of the U-net network is updated by calculating the loss function of 

the noise-added image and the noise. Subsequently, a series of noise iterations are 

performed to completely destroy the image, once the model training is complete, the 

estimated model 𝜀𝜃(𝑥𝑡, t) is obtained. 

 

 
Figure 3.1: DDPM generation process 

 

Then, utilizing the reverse denoising formula derived in Section 3.2, the noise vec-

tor 𝑋𝑇 is gradually denoised and recovered until a high-quality output image 𝑋0 is ob-

tained, DDPM transforms the standard normal distribution into an empirical data dis-

tribution (similar to Langevin dynamics) through a series of refining steps. This al-
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lows for simple neural network parameterization regularization, reducing model col-

lapse, and retaining more details in the image. 

 

3.1.1 DDPM Forward Process 
 

The forward process of the denoising diffusion network, also known as the diffu-

sion process, refers to the continuous addition of Gaussian-distributed noise to image 

data, transforming it into pure Gaussian noise. The purpose is to use a Markov chain 

to convert the complex distribution 𝑞𝑐𝑜𝑚𝑝𝑙𝑒𝑥 formed by the original target data varia-

ble 𝑋0 into a simple normal prior distribution 𝑝𝑝𝑟𝑖𝑜𝑟 (Gaussian noise). 

As shown in Figure 3.3, at each step, the added noise is derived from the noise 

added at the previous time step (this process is a Markov process). As T increases, 𝑋𝑇 

gradually transforms into a Gaussian noise data distribution, and in T time steps, the 

image 𝑋0 is transformed into Gaussian white noise 𝑋𝑇～N(0,1). 

 

 

 

Figure 3.2: DDPM forward process 

 

The variance of 𝑞(𝑥𝑡|𝑥𝑡−1) is defined to be independent of 𝑥𝑡−1 and is expressed as 

𝛽𝑡𝐼, the distribution 𝑞(𝑥𝑡|𝑥𝑡−1) is given by: 

 

                                    𝑞(𝑥𝑡|𝑥𝑡−1)=𝑁(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)                 (3.1) 

 

Here, 𝑁 represents the normal distribution with a mean of √1 − 𝛽𝑡𝑥𝑡−1 and a vari-

ance of 𝛽𝑡𝐼 . Consequently, by sampling from the standard normal distribution 

𝜖𝑡~𝑁(0,1), the relation is: 

                                             𝑥𝑡=√𝑎𝑡𝑥𝑡−1+√1 − 𝑎𝑡𝜖𝑡                                                     (3.2) 
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Based on the previous analysis, the entire diffusion process is a Markov process, 

the posterior probability distribution from input 𝑋0 to 𝑋𝑡 can be expressed as: 

 

                                𝑞(𝑥1:𝑇|𝑥0) = ∏ 𝑞(𝑥𝑡|𝑥𝑡−1)
𝑇
𝑡=1                    (3.3) 

 

Therefore, in the forward process, it is necessary to calculate each time step's 𝑥𝑡, 

similar to the VAE model, a recursive loop needs to be implemented, progressing 

from 𝑥0 to 𝑥𝑇 step by step using Formula 3.3, the process requires repeated sampling 

T times, making the efficiency of the recursive loop calculation low. The original pa-

per did not adopt a step-by-step forward noise addition calculation but utilized a com-

putational trick to directly compute any 𝑥𝑡 from 𝑥0, the specific derivation is as fol-

lows:  

 

                                     𝑥𝑡 = √𝑎𝑡𝑥𝑡−1 +√1 − 𝑎𝑡𝜖𝑡                                                   (3.4) 

      

= √𝑎𝑡𝑎𝑡−1𝑥𝑡−2+√𝑎𝑡 − 𝑎𝑡𝑎𝑡−1𝜖𝑡−1) + √1 − 𝑎𝑡𝜖𝑡      

 

Adding two independent Gaussian distributions with zero mean 

                            √𝑎𝑡𝑎𝑡−1𝑥𝑡−2+√√𝑎𝑡 − 𝑎𝑡𝑎𝑡−1
2
+√1 − 𝑎𝑡

2
𝜖              (3.5) 

Adding variances and replacing with a new Gaussian distribution: 

 

√𝑎𝑡𝑎𝑡−1𝑥𝑡−2+ √1 − 𝑎𝑡𝑎𝑡−1𝜖 

= √∏𝑎𝑖

𝑡

𝑖=1

𝑥0 +√1 −∏𝑎𝑖

𝑡

𝑖=1

𝜖 

                 = √𝑎̅𝑡𝑥0+ √1 − 𝑎̅𝑡𝜖 , 𝑎̅ = ∏ 𝑎𝑖
𝑡
𝑖=1 ,𝜖~𝑁(0,1)             (3.6) 

 

Therefore, the formula derived in the original paper is as follows: 

 

                                                    𝑥𝑡 = √𝑎̅𝑡𝑥0+ √1 − 𝑎̅𝑡𝜖                      (3.7) 

 

Where 𝑎𝑡 = 1 − 𝛽𝑡, and as 𝛽𝑡 continuously increases, with the parameter set to be 

between 0.0001 and 0.002 in the original paper, the weight of noise influence be-

comes increasingly significant as the forward time steps progress. As 𝑡 approaches 

positive infinity, 𝑥𝑡  becomes equivalent to a Gaussian white noise distribution. 
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Through this formula, 𝑥𝑡 with added noise at any time can be calculated, in fact, due 

to the assumption that 𝑞(𝑥𝑡−1|𝑥𝑡) is a linear Gaussian, it is possible to parallelize the 

computation of all 𝑥𝑡. 

 

 

3.1.2 DDPM Reverse Process 
 

The forward diffusion process is a noise generation process, and accordingly, the 

reverse process is a denoising process. As the denoising diffusion model is a standard 

variational inference generative model, the reverse process is also referred to as the 

inference process, in simple terms, it involves iteratively inferring and gradually re-

storing meaningful data, resembling the original data, from Gaussian noise. If we 

have the true data distribution 𝑞(𝑥𝑡−1|𝑥𝑡) at each denoising step, the reverse iteration 

involves continuously sampling, denoising, and progressively reconstructing the 

Gaussian noise until a complete image 𝑞(𝑥0) is obtained. 

However, obtaining the distribution 𝑞(𝑥𝑡−1|𝑥𝑡) directly is challenging because it 

requires the entire training dataset. Therefore, the denoising diffusion model employs 

the construction of a neural network parameterized by 𝜃 to approximate this distribu-

tion. Assuming a distribution 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) represents the distribution for the reverse 

generation process, and this distribution follows a Gaussian distribution, with its mean 

𝜇𝜃 and variance 𝜎𝜃  as parameters depending on 𝑥𝑡 and 𝑡, we have: 

                                𝑝𝜃(𝑥𝑡−1|𝑥𝑡):=𝑁(𝑥𝑡; 𝜇𝜃(𝑥𝑡,t ), 𝜎𝜃(𝑥𝑡,t ))                  (3.9) 

 

In order to reduce the training complexity of the neural network and facilitate com-

putation, during the training process, the variance 𝜎𝜃 is typically set as a constant 𝛽𝑡 

that does not require the involvement of the neural network and is time-dependent, 

only the neural network is used to train the mean 𝜇𝜃. Given the values of 𝑥𝑡 and 𝑥0 at 

time 𝑡, the posterior probability 𝑞(𝑥𝑡−1|𝑥𝑡) can be calculated, then, utilizing Bayes' 

theorem, the posterior distribution 𝑝𝜃(𝑥|𝑧) is given by: 

                                          𝑝𝜃(𝑧|𝑥) =
𝑝𝜃(𝑥|𝑧)𝑝(𝑧)

𝑝𝜃(𝑥)
                                                           (3.10) 

Typically, we employ variational inference, as introduced in the previous section 

on variational autoencoders, to solve for the posterior distribution 𝑝𝜃(𝑧|𝑥), combining 

the formula 3.2 from section 3.1.1 with Bayes' theorem[37], we get:  
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𝑞(𝑥𝑡−1|𝑥𝑡 , 𝑥0)= 𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0)
𝑞(𝑥𝑡−1|𝑥0)
𝑞(𝑥𝑡|, 𝑥0)

 

                        =𝑁(𝑥𝑡−1;𝜇𝑡̃  (𝑥𝑡 −
𝛽𝑡

√1−𝑎̅𝑡
𝑧𝑡̅),

1−𝛼̅𝑡−1

1−𝛼̅𝑡
𝛽𝑡𝐼)                   (3.11) 

From the above equation, we can deduce that: 

                                      𝑥𝑡−1 =
1

√𝑎𝑡
𝑥𝑡 −

1−𝑎𝑡

√1−𝑎̅𝑡
 𝜀𝜃(𝑥𝑡,𝑡)+𝜎𝑡𝑧                                         (3.12) 

This formula represents the reverse inference process of DDPM, and it allows us to 

deduce 𝑥𝑡  from 𝑥𝑡−1. Here, Loss = ‖ε − 𝜀𝜃(𝑥𝑡, t)‖
2, 𝜀𝜃(𝑥𝑡,𝑡) is the noise model 

estimated during the training of the DDPM model based on 𝑥𝑡 and 𝑡, θ represents the 

model training parameters, and 𝜎𝑡 is Gaussian noise following a normal distribution 

𝑁(0,1), used to represent the error between the actual and predicted values. Finally, 

the complete image can be generated through a step-by-step reverse iteration process. 

 

3.2    DDPM U-net model structure 

 
The denoising diffusion probability model (DDPM) employs a U-Net network 

structure[38], as shown in Figure 3.3. Taking advantage of the "image-to-image" 

transformation capabilities of the encoder-decoder architecture, the DDPM diffusion 

model utilizes a U-shaped encoder and decoder structure to predict the noise model. 

 

 

 

Figure 3.3: Denoising diffusion probabilistic model U-net model network structure 
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On the right side is the encoder, consisting of 4 downsampling residual blocks, 

each residual block includes two normalization layers, a SiLU activation function 

(SiLU is a symmetric activation function compared to ReLU, preserving information 

in the negative range), a 4x4 convolutional layer with a stride of 2, and an embedding 

layer, the input 𝑋𝑡 is a single-channel tensor of size 128×128, embedding is used to 

encode the time 𝑡, and the feature map is added to the time 𝑡 processed by the embed-

ding layer, forming a residual block structure, the output is the predicted value 𝜑𝑧 of 

the noise 𝑧, with the same number of output channels and size as the input. The de-

coder is similar to the encoder, consisting of 4 upsampling residual blocks, the decod-

er uses nearest-neighbor interpolation for upsampling, restoring the resolution of the 

feature map to the original image size. Skip connections are established between the 

middle parts of the encoder and decoder, concatenating corresponding feature maps to 

enrich features and enhance the details of image synthesis. 

The U-Net network is regularized using the smooth L1 loss function to constrain la-

tent information such as texture, shape, and style between feature variables and noise. 

In the denoising diffusion probability model, the primary role of the U-Net network is 

to combine image features and map them to the intermediate layers of the U-Net, 

through the structure of the encoder and decoder, it can learn more features of the 

original image after noise addition, simultaneously updating the learning parameters 

of the entire model. 

 

 

3.3    DDPM Super-Resolution Reconstruction Model Principles 
 

From the previous discussion, it's evident that DDPM has shown promising results 

in computer synthesis tasks. However, DDPM is based on unconditional or simple 

conditional model inputs. Therefore, there is a need to enhance the model to make it 

suitable for super-resolution reconstruction tasks. According to references from previ-

ous literature, the super-resolution reconstruction model can be simplistically viewed 

as a conditional denoising diffusion probability generative model [39], as illustrated in 

Figure 3.4. In simpler terms, it leverages the conditional Markov chain of conditional 

DDPM to transform latent variables from a Gaussian distribution based on conditions 

into a conditionally complex distribution, this is employed for the task of super-

resolution image reconstruction. 
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Figure 3.4:  Denoising diffusion probability super-resolution reconstruction model network structure 

 

In the denoising diffusion probability super-resolution reconstruction model, the con-

dition for generation is set as a low-resolution image. Therefore, it is necessary to use 

the LR  (Low-Resolution) image as the conditional input to constrain the solution 

space for HR (High-Resolution) images, the LR image is utilized as a conditional in-

put to the function 𝜖𝜃(∙) to control the synthesis of the HR image. In the forward pro-

cess, the LR image is treated as a conditional dependency and is stacked and merged 

with the high-resolution image after adding noise at the current time step along the 

channel 𝑦0[40], this combined input is then fed into the U-Net network model to 

predict the loss between the noise distribution. 

During the forward process, conditional sampling is performed, and the U-Net net-

work model learns based on the contextual details and semantic information related to 

the LR image, according to the assumptions of the reverse process model from the 

previous section, the conditional distribution can be expressed as 𝑝𝜃(𝑥𝑡−1|𝑥𝑡 , 𝑦) , 

through the inverse diffusion process 𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑦), the conditional distribution is 

learned without modifying the forward diffusion process 𝑞(𝑥1:𝑇|𝑥t−1), this approach 

ensures that the sampled 𝑥 with 𝑦 as a condition has high fidelity, the process can be 

represented as: 

                               𝑝𝜃(𝑥0:𝑇|𝑦) = 𝑝(𝑥𝑇)∏ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡 , 𝑦)
𝑇
𝑡=1                  (3.13) 
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To learn the conditional distribution, the stacked images 𝑦 are used to constrain the 

neural network at all time steps 𝑡, the training objective is defined as follows: 

 

                              𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = 𝐸𝑡,𝑥0,𝑒[𝜖 − 𝜖𝜃(𝑥𝑡, 𝑦, 𝑡)
2]                                           (3.14) 

 

Once the conditional distribution is obtained, the conditional model can be used for 

super-resolution reconstruction inference. In the reverse inference process of super-

resolution reconstruction, starting from random Gaussian noise, given a low-

resolution image LR condition 𝑦, the model combines the low-resolution image as a 

guiding condition with random Gaussian noise, through an iteratively refined inverse 

process, the random Gaussian noise is gradually transformed into a distribution simi-

lar to the data distribution of high-resolution images. According to the derivation in 

Section 3.2, the formula for calculating the conditional distribution 𝑥𝑡−1  of 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑦) is given by: 

 

                                       𝑥𝑡−1 =
1

√𝑎𝑡
𝑥𝑡 −

1−𝑎𝑡

√1−𝑎̅𝑡
 𝜀𝜃(𝑥𝑡, 𝑦,𝑡)+𝜎𝑡𝑧                           (3.15) 

 

Finally, based on 𝑥𝑡−1 after 𝑇 steps of the denoising sampling of the Markov chain, 

the high-resolution image HR is inferred. 

However, it is essential to note that the super-resolution reconstruction task of 

DDPM is different from the original DDPM generation task. In the super-resolution 

reconstruction task, DDPM's reverse diffusion process requires complex probability 

distributions to model the denoising distribution. Therefore, DDPM in the forward 

diffusion process requires thousands of evaluation steps to sample a feature. If DDPM 

uses a small number of sampling steps, it can result in issues such as low-quality gen-

erated high-resolution images. 
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Chapter 4 

Improving the DDPM Super-

Resolution Model 

 
4.1    Improvement of the Noise Schedule Timetable in DDPM 
 

According to the research in Chapter 3 on the forward process, it is known that as T 

increases, 𝑋𝑇 gradually becomes Gaussian noise data. In 𝑇 time steps, the image 𝑋0 is 

transformed into Gaussian white noise 𝑋𝑇～N(0,1). The definition of the variance of 

the forward process 𝑞(𝑥𝑡|𝑥𝑡−1) is independent of 𝑥𝑡−1, with a mean of √1 − 𝛽𝑡𝑥𝑡−1 

and a variance of 𝛽𝑡𝐼  in a normal distribution, the addition of noise at each step 

should maintain a consistent noise diffusion amplitude as much as possible. In the ear-

ly stages of the image distribution, adding some noise can alter the original distribu-

tion, however, as time progresses, more noise needs to be added, accelerating the dif-

fusion. Therefore, it is essential to ensure a consistent noise diffusion amplitude, 𝛽𝑡 is 

a hyperparameter for the DDPM noise scheduling timetable, and 𝛽𝑡 needs to increase. 

Hence, a scheduling timetable is required to control the variation of 𝛽𝑡 from 0.001 to 

0.02, as shown in Figure 4.1, which illustrates several noise scheduling timetables. 

 

 

 

Figure 4.1 Different noise schedule timetables in DDPM 

 

The linear noise schedule is a simple noise scheduling timetable that adds noise to 

the image in a linear manner, the increase in noise is uniform and linear, without con-

sidering specific structures or content in the image. The cosine noise schedule adds 
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noise to the image in the form of a cosine function, the goal of this strategy is to effec-

tively reduce noise while preserving the basic semantic information in the image as 

much as possible, the shape of the cosine function helps smooth the noise addition 

process, reducing damage to the overall features of the image. The quadratic noise 

schedule is a noise scheduling method based on a quadratic function, by adding noise 

to the image along the curve of a quadratic function, finer control over the noise addi-

tion process is achieved, this method may adjust the intensity of noise based on dif-

ferent parts of the image. The sigmoid noise schedule adds noise to the image in the 

shape of a sigmoid function, the sigmoid function is an S-shaped curve, with the char-

acteristic that the output approaches zero or one when the input is small or large. Ap-

plying this function introduces some non-linear changes to the noise increase in the 

image, creating a smooth transition from low to high values, this helps maintain cer-

tain subtle features of the image while adding noise. 

The original DDPM model used a linear noise schedule, which led to excessive 

noise in the early stages, causing rapid and abrupt data diffusion, making the reverse 

restoration difficult. Additionally, since the data itself is close to random noise in the 

later stages, adding insufficient noise, equivalent to small changes, slows down diffu-

sion, requiring more events for the chain length, this results in wasted steps in the dif-

fusion or reverse diffusion process. Through the study of the DDPM, it is found that 

the model needs to add noise more slowly in the early stages and faster in the later 

stages. Therefore, adjusting the time step frequency information in the noise schedul-

ing timetable is necessary to obtain a more efficient noise addition strategy. In this 

work, after repeated studies, the hyperparameter setting for the noise scheduling time-

table will be changed to a cosine noise schedule, this simple modification helps to 

make the process of noise addition smoother, reducing the disruption to the overall 

features of the image. Consequently, noise diffuses better during the forward process, 

aiming to retain the fundamental semantic information in the image as much as possi-

ble, thereby improving the accuracy of synthesis. 

 

4.2    Latent Variable Model 
  

The modeling of deep generative models mainly relies on Latent Variable Mod-

els[41], where latent variables are unobserved but crucial variables in the model. A 

core problem in statistics and machine learning is to learn a complex probability dis-

tribution 𝑝𝜃(𝑥) with given observable high-dimensional sample points x, where 𝜃 rep-

resents the distribution parameters. However, directly modeling complex high-

dimensional distributions is a challenging task. In addressing this issue, latent variable 
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models do not directly model 𝑝𝜃(𝑥), but introduce an unobservable or unmeasurable 

latent variable z and define a conditional distribution 𝑝𝜃(𝑥|𝑧) for the data, often re-

ferred to as the likelihood, the latent variable z itself can be interpreted as a continu-

ous random variable, the purpose of introducing these latent variables is to capture 

latent structures, patterns, or causal relationships in the data, enabling the model to 

have a deeper understanding of the data generation process. 

For example, if one wants to learn the probability distribution of images of apples, 

it is necessary to define a distribution that can model the complex correlations be-

tween all pixels constituting each image, the latent variable z may include latent fea-

tures such as the type, color, or shape of the apple. Furthermore, a prior distribution 

𝑝(𝑧) can be introduced for the latent variable z, representing the model's understand-

ing of the latent variables before learning observable data, based on the prior 𝑝(𝑧) and 

the likelihood function 𝑝𝜃(𝑥|𝑧), the joint distribution of observable variable x and la-

tent variable z can be defined: 

                                            𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)                        (4.1) 

 

According to the definition, a mathematical model that includes latent variables is 

called a latent variable model. Typically, the dimensionality of latent variables is 

much lower than that of the original data vectors, forming a compressed representa-

tion of the data. Therefore, they can be considered as a dimensionality reduction rep-

resentation of the original data. In deep generative models, latent variables play a cru-

cial role in understanding the data generation process and controlling the behavior of 

the model. Specifically, by jointly modeling latent variables with observable real data, 

one can not only understand the data generation process from latent variables to sam-

ples but also infer latent variables based on given observed data for downstream tasks 

such as classification, clustering, and regression. 

Hence, research on latent variable models is essential for studying learning and in-

ference methods in super-resolution reconstruction tasks, the super-resolution recon-

struction method studied in this paper is based on image conditional generation trans-

formation. This reconstruction method requires taking a given input image as the re-

construction target, minimizing the differences between the generated image and the 

target image in both overall and detail aspects. In this context, latent variable models 

can serve as useful features, acting as control valves in the reconstruction process. By 

more precisely controlling specific attributes during the reconstruction process, such 

as changing the skin color, texture, shape, facial details, etc. Through the rightmost 

latent variable feature map in image generation as shown in Figures 4.2 and Figures 
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4.3, latent variable models contribute to learning effective representations of the con-

ditional low-resolution data distribution. 

 

Figure 4.2 Latent variable feature map obtained by the variational autoencoder (VAE) model 

 

The concept of latent variable models is applied in various machine learning tasks, 

including clustering, dimensionality reduction, generative models, semi-supervised 

learning, etc. Common examples include principal components in Principal Compo-

nent Analysis (PCA), factors in Factor Analysis, topics in Latent Dirichlet Allocation 

(LDA), Gaussian Mixture Models (GMMs), etc. In the field of deep learning, latent 

variables frequently appear in models such as autoencoders and generative adversarial 

networks (GANs) to learn the distribution of data and latent variables. 

  

Figure 4.3 Latent variable feature map obtained by the vector quantization variational autoencoder  

(VQ-VAE) model 
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4.3    Latent Variable Denoising Diffusion Super-Resolution 
Reconstruction Model 

 
4.3.1 Latent Variable Denoising Diffusion Probabilistic Model 
Autoencoder 
 

Deep learning for generation aims to find a reasonable mapping relationship such 

that parameters in a low-dimensional space can be sampled onto a corresponding 

sample point in the embedded high-dimensional space distribution, the parameters 

sampled from the low-dimensional space are the latent variables, and the sampled 

low-dimensional space corresponds to the latent variable space. To address challenges 

in synthesizing images at resolutions of 256x256 and 512x512, we employ an encoder 

in the latent variable denoising diffusion probabilistic model to encode and map the 

distribution of training image data to a low-dimensional latent space, obtaining the 

latent variable code z for that image. The denoising diffusion probabilistic model is 

responsible for generation based on the low-dimensional latent space, and the decoder 

is responsible for the inverse operation of decoding, mapping the latent variable z 

from the low-dimensional compressed latent space to the high-dimensional image da-

ta space. 

To avoid arbitrary scaling in the latent space, we introduce a regularization loss 

term 𝐿𝑟𝑒𝑔, which normalizes the latent variable z to be zero-centered and have a small 

variance, we investigate two different latent variable regularization methods: (i) VAE 

(Variational Autoencoder), a standard variational autoencoder that constrains the true 

distribution and the generated distribution by introducing a low-weighted KL diver-

gence between 𝑞𝐸(𝑧|𝑥)=𝑁(𝑧; 𝐸𝜇, 𝐸𝛿2) and the standard normal distribution 𝑁(𝑧; 0,1), 

(ii) VQ-VAE, which regularizes the latent space using a vector quantization layer by 

learning an embedding dictionary with |𝑒| embeddings [42]. 

For high-fidelity reconstruction, we use very small regularization in both VAE and 

VQ-VAE. Through autoencoders, latent variables are constructed, where high-

frequency, imperceptible details are abstracted, achieving access to an efficient, low-

dimensional latent variable space. Compared to the high-dimensional pixel space, this 

space can (i) focus on attention mechanisms and semantic information in the data, and 

(ii) allow the model to be trained in a lower-dimensional, computationally efficient 

space. 

Furthermore, VAE/VQVAE pull the latent variable distribution computed by the 

decoder to a normal distribution and train the output data distribution to closely match 

the distribution of real training data. Therefore, latent variables sampled from the 
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normal distribution can be effectively mapped to the target image space through the 

decoder, reasonable reconstruction of graphical information can be achieved based on 

the encoded latent variables. Additionally, by applying the reparameterization trick to 

the autoencoder and diffusion model, a balance between generation speed and image 

quality can be effectively maintained. 

 

4.3.2 Generation Process of Latent Variable Denoising Diffu-
sion Super-Resolution Reconstruction Model 
 

The generation process of the latent variable denoising diffusion super-resolution 

reconstruction model primarily utilizes the latent variable features generated by the 

VAE/VQVAE, autoencoders to approximate the latent variable Z corresponding to 

the high-resolution image and the conditionally low-resolution LR image that has 

been degraded, the goal is to generate an approximately high-resolution image con-

strained by the condition of the degraded low-resolution image. 

As shown in Figure 4.3, In the forward diffusion process of the latent variable de-

noising diffusion super-resolution reconstruction model, first, as discussed in the pre-

vious section, the VAE/VQVAE encoder is used to fit the distribution of the latent 

space, the high-resolution image is compressed through automatic encoding to replace 

the original image data distribution with the latent variable z. We obtain a latent vari-

able z corresponding to the high-resolution image, which we refer to as the latent code. 

Next, in the DDPM forward process, the latent code is perturbed by noise, here, 𝑋𝑖  

includes the HR (High-Resolution) image 𝑋 and, at each step, Gaussian noise is added 

to 𝑋𝑖−1, with 𝑇 being the total diffusion steps. In DDPM, the latent code gradually 

incorporates Gaussian noise to generate a noisy latent code. 

As described in the earlier sections on super-resolution reconstruction models, LR 

image features are needed as conditions to constrain the generation space of HR im-

ages, the low-resolution LR image, processed after degradation according to the im-

age degradation strategy studied in Chapter 2, serves as a conditional dependency. 

This LR image, along with the latent code obtained by adding noise to the high-

resolution image, is merged and input into the U-Net network module to predict noise, 

perform conditional sampling, and combine image features, mapping them to the in-

termediate layers of U-Net, this process guides the U-Net network to learn more latent 

variable features from LR images and transfers the conditional features to the latent 

space. 
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Figure 4.3 Network structure of latent variable denoising diffusion super-resolution reconstruction 

model 

 

In the reverse inference process, the conditional probability is mapped to the output of 

the U-Net encoder. Convolutional layers are used to learn the mean 𝐹𝜇 and variance 

𝐹𝜎  of the feature map 𝐹𝑥  output by the U-Net encoder, the conditional probability 

mapping feature is then used to predict noise by utilizing convolutional layers in the 

U-Net, the model reduces the Kullback-Leibler (KL) divergence of the noise probabil-

ity distribution between the denoising model and the real model, the low-resolution 

image is taken as a guiding condition and combined with random Gaussian noise. 

Through an iteratively refined inverse process, the combination of random Gaussian 

noise and guiding conditions is gradually transformed into a distribution similar to the 

latent variable data distribution of the high-resolution image. Finally, the decoding 

module of VAE/VQVAE is used to elevate the latent feature variables to a distribu-

tion similar to the originally generated image, achieving the reconstruction of high-

resolution images. In the improvement made during the reverse inference process, the 

original model doesn't directly predict the result of each denoising step but predicts 

the noise directly for the noiseless image and then obtains the result of each denoising 

step through reparameterization. The quantized diffusion model utilizing the reparam-

eterization trick achieves faster generation (about 15 times faster than DDPM models), 

while obtaining better image quality. 
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Through the latent variable Markov chain, using randomly sampled Gaussian dis-

tribution as the input latent variable Z for the feature decoder, the traditional de-

noising diffusion super-resolution reconstruction model experiences a quadratic 

growth in image generation speed with increasing resolution. However, the latent var-

iable denoising diffusion super-resolution reconstruction does not depend on the pre-

vious generation results when generating each discrete code, making the generation 

speed independent of the image resolution. VAE/VQVAE not only effectively fills in 

the missing information due to LR image enlargement but also constrains the solution 

space for reconstructing HR images, this reduction in computational overhead makes 

it easier for the model to learn the current moment's noise and mitigates the negative 

impact of model collapse on HR image reconstruction during rapid sampling. It ena-

bles the rapid production of high-quality HR images with stable style and content 

consistency. While predicting the probability distribution of HR images is challenging, 

the proposed latent variable denoising diffusion super-resolution reconstruction meth-

od mitigates the impact of the inherent randomness in maximizing the variational 

lower bound in DDPM, this results in a stable training process and the generation of 

images that are consistent with the original LR image in terms of both style and con-

tent, producing more natural-looking results. 
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Chapter 5 

Experiment and Evaluation 

 
5.1   Experimental Datasets 
 
5.1.1 CelebFaces Attribute Dataset 

 

  The CelebFaces Attribute dataset is a widely used large-scale dataset in the fields 

of face synthesis, attribute analysis, and editing. As shown in Figure 5.1, it is primari-

ly employed for training and evaluating deep learning models related to faces. The 

dataset comprises thousands of face images of celebrities, accompanied by rich attrib-

ute annotations, these annotations include information such as age, gender, ethnicity, 

facial expression, hair color, and image background, researchers can utilize these an-

notations to train models for predicting various attributes of individuals in the images. 

The images are sourced from publicly available pictures on the internet, The dataset's 

large scale makes it a powerful resource and benchmark dataset for researching and 

developing face recognition algorithms. Additionally, some artificial intelligence 

competitions, such as face attribute prediction competitions, use the CelebFaces At-

tribute dataset as a publicly available competition dataset, This dataset is highly valu-

able for training algorithms related to face synthesis, editing, and other relevant fields. 

 

 

  

Figure 5.1 Different individuals from the CelebFaces Attribute dataset 
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5.1.2 MRI Dataset 
 

We validated our network model using the MRI Brain Tumor Classification dataset 

downloaded from the Kaggle website [45], the MRI Brain Tumor Classification da-

taset is a publicly available training set for brain MRI classification, the dataset in-

cludes over 3000 brain tumor images, comprising pituitary tumors, meningiomas, and 

gliomas, captured in 2D MRI cross-sectional slices in grayscale format, as shown in 

Figure 5.2. The original size of these images is 256×256, but due to constraints in 

GPU memory during experiments, all image sizes were cropped to 128×128. 

 

 

 

 

 

 

 

Figure 5.2 Scanned images from the MRI Brain Tumor Classification dataset 

 

5.1.3 Kather Colorectal Cancer Histology Multi-class Texture 
Analysis dataset 
 

This image dataset is sourced from the Heidelberg University and Mannheim Uni-

versity Medical Center Pathology Institute, provided on the Kaggle website, as shown 

in Figure 5.3.  It consists of completely anonymous histopathological images of hu-

man colorectal cancer tissue, totaling 4,000 images covering eight different types of 

tissue.  

 

 

 

 

 

 

 

Figure5.3  The pathological images are sourced from a multi-class texture analysis dataset of colorectal 

cancer. 

For training and validation, we selected 3,000 images with clear key details such as 

cell nuclei, cytoplasm, and glandular structures as the training set, and 500 images as 
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the validation set. Each pathological image has a size of 256×256 pixels, stored in TIF 

format, and a pixel size of 0.495 micrometers, these images were digitized using Ape-

rio ScanScope (Aperio/Leica Biosystems) at a magnification of 20x. 

 

 

5.2   Experimental Conditions and Hyperparameter Settings 
 

This article conducted experiments using the pytorch framework, running on both 

Google Colab and a local laboratory server environment, all model training was per-

formed using GPU acceleration. The server utilized an Intel(R) Xeon(R) CPU E5-

2630 v4 @ 2.20GHz processor, with two NVIDIA GeForce GTX 1080 Ti GPUs, each 

having a 12GB memory, totaling 24GB. The Google Colab platform used NVIDIA 

Tesla T4 and A100 GPUs. The programming language used in this work is Python, 

and the deep learning architecture is implemented using pytorch 1.7.1 with CUDA 

11.1 support, the initial learning rate was set to lr=5e-4, and the loss function em-

ployed was the Smooth L1 loss function. During the experiments, Set the training 

batch size based on the model size and GPU capacity, the initial learning rate was 

0.0002, and the optimization algorithm used was Adam, the noise schedule 𝛽1 for the 

diffusion model employed a cosine schedule, the total steps for the generative model 

were set to 1000, while for the super-resolution model, it was set to 2000, the training 

loop was configured for 300 epochs. 

 

5.3   Quality Evaluation Standards for Super-Resolution Re-
construction 

 
5.3.1 Objective Evaluation Criteria 
 

For the quality evaluation of images, this paper primarily utilizes two commonly 

used image assessment metrics: Peak Signal-to-Noise Ratio (PSNR) [44] and Struc-

tural Similarity Index (SSIM) [46] to judge the reconstruction image quality. PSNR is 

one of the most widely used quality assessment metrics in lossy transformation tasks, 

such as image denoising, compression, and deblurring. It represents the ratio of the 

maximum possible power of a signal to the power of noise that affects its accuracy, 

expressed in dB. For post-image super-resolution reconstruction, reconstruction error 

can be considered as noise, typically represented by Mean Squared Error (MSE). Giv-

en a ground truth HR image 𝐼𝐻𝑅 and the reconstructed SR image 𝐼𝑆𝑅, MSE is defined 

as follows: 
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                             𝑀𝑆𝐸 =
1

𝑁𝑀
∑ ∑ (𝐼𝐻𝑅(𝑖, 𝑗) − 𝐼𝑆𝑅(𝑖, 𝑗))

2
 𝑀

𝑗=1
𝑁
𝑖=1               (5.1) 

 

where M and N represent the width and height of the image. Therefore, the PSNR 

of the reconstructed image 𝐼𝑆𝑅 is defined as: 

                                      𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 [
𝐿2

𝑀𝑆𝐸
]                        (5.2) 

 

PSNR, to some extent, reflects the approximation of the reconstructed image to the 

original image, it objectively evaluates the noise level in the image. However, because 

PSNR is only related to per-pixel MSE and focuses solely on the differences between 

corresponding pixels without considering visual perception, it may not be consistent 

with human perception in real-world scenarios. Despite this, PSNR remains widely 

used in image super-resolution reconstruction tasks due to its prevalence in previous 

literature and the absence of completely accurate perceptual metrics. A higher PSNR 

value indicates better image quality. Structural Similarity Index (SSIM) compares the 

similarity and differences between the original and reconstructed images in terms of 

brightness, structure, and contrast, thereby judging the quality of the image after re-

construction. A larger SSIM value indicates less difference between the reconstructed 

image and the original reference image, the formula for calculating SSIM is as fol-

lows: 

                        

1 2

2 2 2 2

1 2
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c c
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where 𝑥 and 𝑦 represent the two images being compared, 𝜇𝑋 is the average pixel 

value of image 𝑥, 𝜇𝑌 is the average pixel value of image 𝑦, 𝜇𝑋
2and 𝜇𝑌

2 are the vari-

ances of images 𝑥 and 𝑦, and 𝜎𝑋𝑌 is their covariance. Constants 𝑐₁ = (𝑘1𝐿)² and 𝑐₂ 

= (𝑘2𝐿)²are added to avoid division by zero, where 𝐿 represents the dynamic range 

of pixel values (usually 255). Typically, 𝑘1 is set to 0.01, 𝑘2 to 0.03, and 𝐿 to 255. 

The SSIM value ranges from −1 to 1, with higher values indicating greater similarity, 

SSIM is generally more suitable for evaluating structural similarity between local re-

gions of images. 
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5.3.2 Subjective Evaluation Criteria 
 

In recent years, subjective assessment of image super-resolution quality has be-

come increasingly important. Subjective assessment relies on the observation of an 

image by the human eye, involving a subjective judgment of whether the image con-

forms to visual characteristics and an evaluation of the perceived quality of the recon-

structed image. Since the human eye is sensitive to information such as edge contours, 

textures, color, and brightness in an image, it can quickly capture differences between 

two images, particularly in regions with distinct edge contours, this direct reflection of 

human visual perception results in subjective evaluation. 

To measure the quality of super-resolution reconstructed images, we focused on as-

pects such as clarity and texture details and compared them with the information from 

the original HR images. We designed a subjective evaluation criterion to assess image 

quality, we organized a group of 20 friends and family members as testers to score 

images reconstructed by different algorithms based on their personal visual percep-

tions and some standard criteria, the images were rated on different levels of quality, 

ranging from high to low, divided into four categories: Excellent, Good, Fair, and 

Poor. Each category corresponds to different scoring criteria, for images with good 

texture details and clarity, and high color contrast, a score of 4 points was given. For 

images with acceptable texture details and clarity, a score of 3 points was assigned, 

images with poor texture details and clarity received a score of 2 points, while images 

with completely blurred texture details were given a score of 1 point. Testers judged 

the image effects based on their subjective feelings and the evaluation table for image 

quality. 

To simplify the recording of scoring evaluation results, we introduced user prefer-

ence (up) as a qualitative evaluation metric with high subjectivity. By categorizing 4 

points and 3 points as user satisfaction and 2 points and 1 point as user dissatisfaction, 

we performed statistical analysis and presented the results in percentage form. Subjec-

tive evaluation is highly subjective and influenced by various factors such as the sub-

jective perception and visual acuity of the testers, evaluation criteria, and other uncer-

tainties, this introduces a significant degree of variability in the results, making it 

challenging to precisely assess the performance of the algorithm. 
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5.4   Experimental Results of Latent Variable DDPM 
 
5.4.1Experimental Results of Latent Variable DDPM Genera-
tion 
 

We first use our improved latent variable autoencoder DDPM generative model to 

synthesize natural images and medical pathological images with completely random 

Gaussian noise, as shown in Figure 5.4.  

  
 

Figure 5.4: The two images above are generated using our improved DDPM model from Gaussian 

noise, including natural images and pathological images  

 

To validate the results of image generation by VAE/VQVAE latent variable auto-

encoder DDPM, we compared different generative network models, all network mod-

els were obtained from publicly available code, as shown in Figure 5.5. From the fig-

ures, it is clear that the GAN-generated adversarial network synthesizes MRI with 

blurred boundaries and artifacts, while the anatomical effects are poor, and the gray 

and white matter regions in the brain are unclear. In contrast, DDPM, VAE-DDPM, 

and VQVAE-DDPM use a noise addition and denoising image synthesis method, 

avoiding the issues of GAN structures not meeting KL divergence Nash equilibrium 

and "mode collapse." The image quality difference between DDPM, our improved 

VAE-DDPM, and VQ-DDPM is not very noticeable. Compared to other methods, 

DDPM, our improved VAE-DDPM, and VQ-DDPM can sample high-quality 2D 

MRI slice images with clear details and realistic textures, with higher image restora-

tion quality than other generative adversarial network methods, the parameter count of 

VAE-DDPM and VQ-DDPM denoising diffusion probability models is less than that 

of the denoising diffusion probability model, occupying less GPU memory and 

achieving higher efficiency in backward inference synthesis. 
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Figure 5.5:  Results of MRI generated by different generation network models 

 

5.4.2 Experimental results of latent variable DDPM super-

resolution image reconstruction 
 

As shown in Figure 5.5, we compared various super-resolution reconstruction 

models. We observed that SRCNN and FSRCNN, both based on convolutional neural 

networks for mapping in super-resolution reconstruction, overall exhibit poor recon-

struction effects, although the reconstructed images are slightly clearer than the origi-

nal LR images, the texture information cannot be restored clearly, this method only 

considers the correlation between pixels in the neighborhood, and due to degradation 

issues, there are often problems such as edge aliasing and blurring of edge and texture 

information within the neighborhood. It fails to restore the high-frequency infor-

mation of the image and address the loss of edge information, resulting in unsatisfac-

tory reconstruction effects. 

 

 
Figure 5.5: Facial super-resolution reconstruction results using different super-resolution models 
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The last four methods are based on the approach of generating and reconstructing 

transformations through conditioned image generation. From the images, it can be 

observed that these methods, which learn the conditional image features for image 

transformation, demonstrate better generative results. This approach effectively pro-

tects information such as image edges and textures, particularly addressing false phe-

nomena in edge information that may occur in high-noise images. Not only does it 

preserve fine details, but it also enhances the overall quality of image reconstruction, 

resulting in clearer and more detailed images. We improved the VAE-DDPM 

VQVAE-DDPM network, and compared it with DDPM, highlights the advantage of 

adding VAE/VQVAE autoencoder latent variables. To demonstrate that latent varia-

bles can better extract features and semantics from images, We compared using SSIM 

heatmaps, as shown in Figure 5.6, The heatmap indicates that the VQVAE-DDPM 

produces images with the least red regions, proving that the implicitly extracted fea-

tures by its autoencoder contribute to preserving image details. Therefore, the recon-

structed super-resolution images exhibit the best results.  

 

Figure 5.6: Comparison of SSIM heatmap effects for DDPM, VQVAE-DDPM, and VAE-DDPM. Red 

indicates a small SSIM value, signifying large differences between images, while blue areas represent 

small differences between the two images 

 

As the generation of results relies on learning conditioned image features, the quali-

ty of the generated results determines the effectiveness of the reconstruction, this ap-

proach is dependent on the construction of the conditional dataset, and controlling la-

tent feature information in the dataset distribution is challenging. Although VAE-

DDPM performs well in recovering high-frequency features such as edges and tex-

tures of features like beards and eyes in the image, as seen in the SSIM heatmap, it 

demonstrates better results than DDPM. However, the overall color contrast in the 

reconstructed super-resolution images by VAE-DDPM deviates from the original 

high-resolution images, this deviation leads to suboptimal reconstruction results, fu-

ture work could address this issue by studying specific adjustments to color parame-

ters. 
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From the loss graph in the left image of Figure 5.7, we can observe that the im-

proved model, VQVAE-DDPM, exhibits smaller losses compared to the original 

DDPM. It converges faster, reaches stability more quickly, and shows a smoother 

progression, this indicates that VQVAE-DDPM has an enhanced accuracy in recon-

structing super-resolution images. 

 

 

Figure 5.7: Results of the loss overview for DDPM and VQVAE-DDPM,  the average sampling time 

and memory consumption for DDPM, VAE-DDPM, and VQVAE-DDPM 

 

The right graph in Figure 5.7 and Figure 5.8 illustrates that methods for generating 

transformation reconstructions through image-conditioned approaches have a large 

number of parameters, especially in the case of DDPM, VAE-DDPM, and VQVAE-

DDPM. One of the advantages of a large number of model parameters is the ability to 

linearly fit different details. However, excessively large model parameters can lead to 

issues such as high GPU memory usage and extended training times. 

 

Figure 5.8: The figure presents a comparison of parameter count and performance metrics for var-

ious super-resolution models, ours model is represented by a different color or symbol for clarity 
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In our improved models, VAE-DDPM and VQVAE-DDPM, the number of model 

parameters is reduced compared to the original DDPM model, yet their performance 

remains unaffected. As seen in the right graph of Figure 5.7, the GPU memory usage 

for VAE-DDPM and VQVAE-DDPM is noticeably lower than that for DDPM. 

Therefore, by introducing VAE/VQVAE autoencoders to model the distribution of 

latent space, we have reduced the model's parameter count, alleviated GPU memory 

usage, and simultaneously decreased training times and the duration of reverse infer-

ence. Importantly, these improvements do not compromise the clarity and quality of 

the synthesized images. 

We compared various super-resolution reconstruction models based on PSNR and 

SSIM metrics, as shown in Table 5.1, along with an evaluation of model parameters. 

SRCNN, being an early method relying on mean square error for super-resolution re-

construction, exhibits relatively low PSNR and SSIM values. While FSRCNN and 

SRCNN show improvements in PSNR and SSIM, there is still a noticeable gap in su-

per-resolution effectiveness compared to real facial images. DDPMSR outperforms 

previous works in terms of both PSNR and SSIM evaluation metrics, demonstrating 

its ability to generate high-quality super-resolution images. However, VAE-DDPM 

has some color parameter issues, leading to slight deviations in the reconstruction, 

resulting in lower PSNR and SSIM values. On the other hand, VQVAE-DDPM 

achieves the best super-resolution reconstruction results among the compared models. 

 

Table 5.1: Objective evaluation table for the quality of super-resolution reconstructed images 

 

 

 

We also conducted a subjective evaluation of super-resolution reconstruction re-

sults, and the user satisfaction (up) scores are presented in Table 5.2. From the table, 

it can be seen that VQVAE-DDPM achieves higher subjective satisfaction scores. The 

satisfaction scores for DDPM-based methods are higher than those for convolutional 

neural network-based mapping and generative adversarial network-based reconstruc-

tion methods. It's important to note that subjective evaluations are based on individual 
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opinions, and when the visual differences between the reconstructed and original im-

ages are minimal, subjective evaluation methods may not provide highly accurate 

judgments. Therefore, subjective evaluation is used as a complementary metric to ob-

jectively assess our super-resolution results. 

Table 5.2 Subjective satisfaction (up) evaluation table for the quality of super-resolution reconstructed 

images 

 

 

We conducted experiments and comparisons on two synthetic network models, 

VAE-DDPM, and VQVAE-DDPM, with training batches at 30, 60, 120, 240, and 300 

epochs, displaying their synthetic effects as shown in Figure 5.9. In the first column 

from the left, it can be observed that at 30 epochs of training, due to the incomplete 

training of the denoising model, it can only make simple predictions on randomly 

generated noise distributions, the facial image details recovered from random noise 

are somewhat blurry, and the predicted synthetic distribution results are low.  
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Figure 5.9: Reconstruction results and latent feature comparison results for two synthetic network 

models (VAE-DDPM, VQVAE-DDPM) at training batches 30, 60, 120, 240, and 300 

The generated images exhibit obvious traces of artificial synthesis, by comparing with 

the second image, we can see that VAE-DDPM has slightly poorer synthetic image 

quality than VQVAE-DDPM. When the training batch is above 120 epochs, VAE-

DDPM stabilizes in terms of its discrete fitting ability and latent feature information, 

resulting in stable reconstruction quality.    

In our final study, we investigated different image quality degradation strategies for 

degraded super-resolution reconstruction, we experimented with randomly mixing 

bicubic interpolation and degradation factors as strategies for low-quality reconstruc-

tion of low-resolution images. As shown in Figure 5.10, simple bicubic interpolation 

for image degradation results in a relatively blurry low-resolution image, making it 

closer to true low resolution due to the degradation factors. On the other hand, our 

adopted random mixing degradation strategy for low-quality reconstruction produces 

low-resolution images with texture details that are more akin to real image degrada-

tion processes. This degradation strategy effectively preserves a significant amount of 

image semantics and high-frequency details, therefore, using a random mixing degra-

dation strategy enhances the clarity of the reconstructed images, making the data gen-

eration process more natural. 
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Figure 5.10: Comparison of low-resolution images reconstructed using different image degradation 

methods 

 

To validate the effectiveness of the latent variable DDPM for super-resolution im-

age reconstruction and its transfer application to medical pathology images, we con-

ducted comparative experiments on the Kather colorectal cancer histology multi-class 

texture dataset, the results of 4x resolution reconstruction are shown in Figure 5.11. 

From the images, it is evident that SRGAN, DDPMSR, VAE-DDPM, and VQVAE-

DDPM produce results very close to real high-resolution images. However, in the 

fourth SRGAN reconstruction image at the bottom of Figure 5.11, there are slight 

pale purple artifacts in the lower white region, whereas DDPMSR and VQVAE-

DDPM closely resemble the real image with an all-white appearance. This difference 

is attributed to the fact that DDPMSR and VQVAE-DDPM do not require additional 

modules, such as discriminators. During training, they do not need to balance Nash 

equilibrium conditions, avoiding issues like gradient explosions and mode collapse. 

VQVAE-DDPM shows excellent super-resolution results on colorectal cancer multi-

class texture pathology images, and compared to generative adversarial networks, it 

avoids artifacts, resulting in more natural-looking reconstructions and reconstructs 

clearer textures, maintaining a strong consistency with HR images. However, VAE-

DDPM may have color deviation issues due to its color settings, making it less suita-

ble for medical image transfer and not achieving the desired super-resolution effect. 

Nevertheless, these experimental results demonstrate that our latent variable de-

noising diffusion super-resolution reconstruction model can be successfully applied to 

the field of medical image super-resolution processing, indicating its high practical 

value. 
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Figure 5.11: Results of a different super-resolution methods 4x reconstruction (32×32→ 128×128) 

 

Additionally, we performed super-resolution reconstruction on medical pathology 

images with an 8x enlargement factor. In the standard 8x super-resolution reconstruc-

tion experiment, we randomly selected three 16x16 resolution images from the test set 

and reconstructed them for comparison, we then compared the reconstructed images 

after 8x enlargement from different networks. Due to the larger enlargement factor, 

there are inherent differences between the reconstructed images and the reference im-

ages, the results are shown in Figure 5.12. 

From the images, it can be observed that the images reconstructed by SRCNN are 

relatively blurry, with poor texture details. On the other hand, both SRGAN and 

DDPMSR networks achieve better visual reconstruction results, clear organizational 

structural textures and richer details are visible in these images, closely resembling 

real HR images. However, the images reconstructed by SRGAN exhibit blurriness 

and artifacts at the edges, such as ripples and aliasing, resulting in a lack of edge de-

tails and a less natural appearance compared to the original HR images. 

Our improved model shows strong recovery of image texture details, although the 

color restoration may not be perfect. In contrast, DDPMSR's reconstructed images 

present a more natural appearance in terms of edge details, indicating that the 

DDPMSR model can finely preserve the complete information of the images even at 

larger enlargement factors. 
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Figure 5.12:  Results of a different super-resolution methods 8x reconstruction (16×16 → 128×128) 

 

 

Figure 5.13:  Different colorization method celebfaces attribute dataset coloring effect comparison 

 

We also extended our improved latent variable denoising diffusion model to other 

domain tasks, such as image colorization. Initially, we utilized the CelebFaces Attrib-

ute dataset for colorization, a comparison of colorization results among various meth-

ods is presented in Figure 5.13. 
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Figure 5.14:  Different colorization method animes coloring effect comparison 

 

Contrasting with real images, it can be observed that previous methods like 

Zhang's[47]  and DCGAN's[48]  colorization outcomes were subpar, with most areas 

of the images appearing yellowish and lacking semantic fidelity in background color 

restoration. However, in our VQVAE-DDPM method, the color fidelity is higher, and 

the colorized images closely resemble real ones. Furthermore, we validated our im-

proved latent variable denoising diffusion model by training it on the Rem (a charac-

ter from anime) dataset for anime colorization experiments. As depicted in the Figure 

5.14, the colorized images generated by our VQVAE-DDPM model exhibit rich and 

vibrant colors, with strong semantic information, better preserving Rem's original 

colors. Thus, this validates the advancement of our improved denoising diffusion 

model in the field of image colorization. 
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Chapter 6 

Conclusions 
 

This paper primarily investigates four aspects of image processing based on an im-

proved denoising diffusion probabilistic model: including image super-resolution and 

degradation principles and strategies, denoising diffusion probability models, im-

provement schemes for latent variable denoising diffusion super-resolution models, 

and the application of improved models to medical image processing and other tasks 

in computer vision image processing such as image colorization. 

There are various processes of image quality degradation in the real world. In con-

trast to some current image reconstruction research that only targets specific degrada-

tion types, this study first investigates the process of image degradation and degrada-

tion, which includes three degradation factors that lead to real image degradation: blur, 

downsampling, and noise. We adopt a degradation strategy that randomly mixes deg-

radation factors as much as possible to train, and the results generated by this mixed 

degradation strategy are found to be better in face super-resolution experiments. 

Simultaneously, we improve the original denoising diffusion probability network 

and propose a latent variable denoising diffusion super-resolution reconstruction 

model for synthesizing clear images and image super-resolution reconstruction, this 

improvement introduces intermediate latent variables into the model for transition. In 

the forward diffusion process, similar to the original DDPM model's diffusion process, 

the high-resolution image input is transformed into latent variables Z through feature 

decoders, after T times of adding Gaussian noise to latent variable Z, it is transformed 

into a Gaussian noise distribution. Since the image super-resolution reconstruction 

model needs to constrain the solution space of HR images, the latent variables Z of 

the low-resolution image LR and the high-resolution image HR after noise addition at 

the current moment are stacked together for conditional sampling. Then, the powerful 

parameter fitting ability of the diffusion denoising network is used to learn the distri-

bution of latent variables Z. In the reverse inference process, the model combines the 

low-resolution image as a guiding condition with random Gaussian noise distribution. 

Through iteratively refined inverse processes, the randomly combined Gaussian noise 

is gradually transformed into latent variable 𝑍𝜑 of the high-resolution image. Finally, 

the latent feature variable 𝑍𝜑 is promoted to a distribution similar to the original gen-

erated image distribution using the decoding module of VAE/VQVAE, thus achieving 

the reconstruction of high-resolution images. Experimental results show that 
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VAE/VQVAE-DDPM produces clearer and more natural images after reconstruction 

compared to other methods. 

The improved super-resolution reconstruction network model solves the problems 

of single degradation in low-resolution dataset images and the gradient explosion of 

traditional generative adversarial network (GAN) images, as well as the problem of 

pattern collapse synthesis producing artifacts. Finally, we conducted comparative ex-

periments on both a facial dataset and the Kather colorectal histology multi-class tex-

ture dataset. The results indicate significant achievements in super-resolution recon-

struction of facial images, outperforming the DDPM method in terms of peak signal-

to-noise ratio (PSNR) and structural similarity index (SSIM), as well as traditional 

methods such as ESRGAN, SRCNN, and FSRCNN. Meanwhile, applying this meth-

od to the study of colorectal tissue unit pathology images, the experimental results 

show that the method surpasses traditional generative adversarial network super-

resolution methods in high-resolution reconstruction, demonstrating significant ad-

vantages, it not only preserves fine details but also improves the overall image recon-

struction quality. Finally, we conducted research on the improvement of the denoising 

diffusion model in image colorization tasks, we validated on face datasets and anime 

datasets, and comparative experimental results show that the improved denoising dif-

fusion model also has advanced performance in image colorization fields. 

This research has made significant contributions to face recognition, pathology di-

agnosis and treatment, color restoration of old photos, and automatic colorization of 

animations, providing a powerful computer image processing tool. However, there are 

still some issues in our research. For example, although our improved denoising diffu-

sion probability super-resolution model optimizes the reverse inference time, the 

overall inference time is still long. Additionally, how to control the integration of la-

tent feature information, such as image edges and textures, may affect the colors and 

semantic details of high-resolution pathological images generated by DDPM super-

resolution models. Therefore, improving inference methods to shorten inference time, 

integrating multiscale resolutions into DDPM super-resolution models, and address-

ing improvements in video super-resolution and video colorization will be the focus 

of future research. 
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