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Abstract 

Poor machinability of hard-to-machine materials limits their applications in industries. 

Ultrasonic assisted grinding (UAG), a hybrid machining process combining 

material-removal mechanisms of diamond grinding and ultrasonic machining, is one 

cost-effective machining method for these materials. This study focuses on internal 

grinding of silicon carbide (SiC) ceramics with the assistance of ultrasonic. The 

motivations for this study were outlined first. Following the processing principal of 

ultrasonic assisted internal grinding (UAIG), the UAIG experiment apparatus were 

constructed. With the constructed experiment rig, experiments on machining 

characteristics were performed. The experiment results evidence that grinding force in 

UAIG are significantly reduced compared with those in conventional internal grinding 

(CIG); the greater improvement of the form accuracy and surface quality are achieved 

in UAIG compared with those in CIG; grinding wheel wear are alleviated in UAIG 

compared to that in CIG. 

Grinding force is an important issue in grinding process. In order to optimize 

grinding parameters to achieve high product quality and productivity, a grinding force 

model for UAIG of SiC ceramics is developed. Effects of grinding parameters 

(workpiece rotational speed, wheel infeed rate, wheel rotational speed, ultrasonic 

vibration (UV) amplitude, and the oscillation frequency), on grinding force are 

predicted. In addition, the grinding force reduction mechanism in UAIG is explored. 

The experiment results show that grinding force reduction is attributed to the 

formation of the smaller the undeformed chip cross sectional area.  

To deeply investigate the material removal mechanism in ultrasonic assisted 

internal grinding of SiC ceramics, the ultrasonic assisted scratching (UAS) tests were 

performed on SiC ceramics with a self-designed ultrasonic unit. Besides, a validated 

simulation model is developed to further investigate material removal mechanism in 

UAS. The obtained results evidence that: the scratching groove formed appears 

straight in the CS process while it is sinusoidal in the UAS process; the UV in the 

direction that vertical to work-surface strongly contributes to the material removal, 
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whereas the UV in the direction that parallel to work-surface only results in variation 

of the cutting trace and hardly contributes to the material removal in the UAS process;  

the cutting ability of the tool was significantly improved by the assistance of the UV; 

the impact and cutting action at the tool tip on the machining surface are the main 

factors contributing to the material removal. 

The last part of this study is to extend the method so as to open a door to potential 

industrial applications. The results show that critical depth of cut in UAIG is deeper  

than that CIG, meaning that ductile mode grinding is easily achieved in UAIG; high 

accuracy can be achieved by UAIG. 

All in all, this study confirms that UAIG is a highly effective processing method for 

SiC ceramics. The technology has the potential to being further extend to other 

materials. 
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Chapter 1 Introduction 

1.1 Silicon carbide (SiC) Ceramics  

Ceramic materials play an influential role in the progress of many fields of modern 

technologies, such as communication and information technology, energy and 

environmental technology, transportation and production technology, as well as the 

life sciences [1]. Especially, Silicon carbide (SiC) is an important non-oxide ceramic 

which has deserves much attention [2].  

The properties of ceramic materials are dependent on the characteristics of the 

microstructure, which in turn is influenced by the characteristics and manufacturing 

process (raw material properties, additive properties, molding conditions, sintering 

conditions, etc.) of the material [3]. Fig. 1.1 shows microstructures of SiC ceramics 

which were produced by sintering method. Due to uniform microstructure free of 

abnormal grain growth, SiC ceramics is possible to have an extremely stable quality.  

Table 1 shows the material properties of SiC ceramics used for this study. It is known 

that SiC ceramics has exclusive properties such as high hardness and strength, 

chemical and thermal stability, etc. All of these qualities make SiC ceramics a perfect 

candidate for high power, high temperature electronic devices as well as abrasion and 

cutting applications [3].   

                 

     Fig. 1.1 SEM image of microstructure of SiC ceramics used for this study. 
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Table 1.1 Silicon Carbide Ceramics Properties (Obtained from JAPAN FINE 

CERAMICS CO., LTD.) 

 

 

 

 

 

Mechanical 

Density g/cm
3
 3.1 

Porosity %  0 

Flexural Strength MPa  490 

Elastic Modulus GPa  430 

Poisson’s Ratio — 0.16 

Compressive Strength MPa  3900 

Hardness Kg/mm
2
 2800 

Fracture Toughness KIC MPa•m
1/2

 4.6 

 

Thermal 

Thermal Conductivity W/m•°K  158 

Coefficient of Thermal 

Expansion 
10

–6
/°C  4.0 

Specific Heat J/Kg•°K  750 

 

In recent years, the demands for high precision and efficient fabrication of 

aspherical lens used for X-ray telescopes, digital cameras etc. have been rapidly 

increased with the development of IT industry. In generally, the aspherical lenses are 

produced by using internal shape mold with a press molding method [4]. As shown in 

Fig.1.2, in the aspherical lens manufacturing process, the mold is used in severe 

environment like high temperature and high pressure, therefore, the mold sleeves 

should have high-temperature characteristic and high wear resistance. Ceramics, 

especially, silicon carbide materials (SiC) exhibit good material properties, which are 

superior to those of other materials, these properties make SiC become a perfect 

material for molding dies used for hot-press molding of glass lenses [5].  
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           Fig.1.2 Illustration for aspherical lens manufacturing.   

 

1.2 Ultrasonic assisted internal grinding (UAIG) 

1.2.1 Internal grinding 

In aspherical lens manufacturing, as a step to obtain the mold with high quality and 

long working life, it is strongly demanded to precisely machine the internal 

cylindrical surface of the sleeve. Meanwhile, as SiC ceramics is a typical hard-brittle 

and difficult-to-machine material, conventionally internal grinding with diamond 

grinding wheel is performed for machining the internal surfaces of SiC ceramics 

sleeve to obtain high finish accuracy.   

Depending on the type of workpiece holding, internal grinding can be divided into 

chucking type and centerless type (Fig. 1.3 and 1.4) [6]. Chucking type can also be 

classified as (a) both the workpiece and the grinding rotating type (Fig. 1.3(a)) (b) 

planetary type (Fig. 1.3(b)). In planetary type, the workpiece is held by chuck and 

doesn't rotate, whereas the grinding wheel rotates at rotational speed and dose a 

planetary motion respective to the workpiece in the grinding process. Centerless 

internal grinding type can be divided into (a) roll supported grinding type (Fig. 1.4(a)) 

(b) shoe supported grinding type (Fig. 1.4(b)).  
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(a)Workpiece and wheel rotating type                (b) Planetary type 

Fig. 1.3 Chucking internal grinding  

 

 

 

 

 

 

 

 

 

 

 

          

 

     (a)Roll supported type           (b)  Shoe supported type 

                     Fig. 1.4 Centerless internal grinding 

 

Until now, much attention has been paid to internal grinding. The related studies 

mainly focus on the machining characteristics, optimization of the internal grinding 

parameters, grinding mechanism, and high efficient internal grinding method.  

Kakuda et al. found that formation error occurring from continuous operation in 

internal grinding is due to the function of the respective relative positions of the center 

of the workpiece and the grinding wheel spindle and, also, of the diamond cutting 

edge [7, 8]. Teraya et al. experimentally investigated the influence of the grinding 

parameter on the grinding accuracy [9]. The results showed that surface roughness 

Workpiece 

Grinding wheel Grinding wheel 

Workpiece 

Regulating wheel 
Workpiece 

Hold down roll 

Grinding wheel 

Workpiece 

Grinding wheel 

Hold down shoe 

Hold down roll 
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and roundness becomes bad when grinding wheel changes direction in traverse 

grinding, owing to the impact of the grinding wheel on the workpiece. In their later 

study [10], they investigated the influence of the grinding parameter on formation 

accuracy. Yamamoto et al. studied the dynamic behavior of spindle in internal 

grinding and found that the spindle in operation process has two surpassed 

frequencies, one is caused by unbalanced weight of the spindle and the other one is 

due to unsymmetrical bending rigidity of the spindle resulting from the existence of 

screw holes for fastening up the wheel shaft [11].  

To optimize the internal grinding parameters, Nakajima Toshikatsu et al. 

determined oscillation conditions for optimizing surface roughness in internal 

grinding and concluded that the improvement mechanism of surface roughness is 

attributed to the crossing phenomenon of grinding paths; the existence of the 

restricted interference phenomenon results in the rougher the surface roughness of 

workpiece; [12, 13]. Tsukamoto et al. investigated the optimal geometrical accuracy 

in internal oscillation grinding of deep straight holes [14]. To elucidate internal 

grinding mechanism, Nakajima Toshikatsu et al. investigated behavior of thermal 

deformations of wheel and workpiece and form generation mechanism in internal 

grinding process. The results showed that the workpiece surface expands with the 

thermal deformation in the opposite direction of wheel surface in the internal plunge 

grinding; the ground workpiece profile becomes an extremely concave profile due to 

the thermal deformation of wheel [15]. In their later study, they analyzed taper 

generation mechanism in deep hole oscillation internal grinding and found that the 

taper error of workpiece can be significantly improved with the surface roughness in 

the retraction grinding method; the extending of spark-out grinding time has an 

influential effect on the taper generation in the retraction grinding, owing to the 

stiffness of the grinding wheel shaft and workpiece spindle [16] Zhou Li-qun et al. 

investigated the thermal deformation in internal grinding by FEM method [17]. The 

results found that the thermal deformation of the ground cirque is basically 

symmetrical in a diamond shape, but the deformations of the inner circle and the outer 

circle are not uniform, and the inner circle thermal deformation may be negative or 
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positive.  

Meanwhile, research attempts have been devoted to improve internal grinding 

efficiency. J. MARKUL and B. SŁOWISKI gived an analysis of the effectiveness of 

the grinding at higher peripheral speeds and higher hardness of grinding wheels in 

internal grinding [18]. To defeat some problems of internal grinding such as poor 

enrichment of coolant lubricant, deflection of grinding tool and the resulting 

inaccuracy, low material removal and high heat generation because of long contact 

length, T. Tawakoli et al. proposed a new kinematic [19]. The experimental result 

showed that this method can enhance the cutting speed and reduce contact surface 

between the grinding wheel and workpiece compared to conventional internal 

grinding. Qian Jun et al. [20, 21] and Kaifei Zhang et al. [22] introduced electrolytic 

in-process dressing (ELID) into internal grinding. Their experimental results showed 

that mirror surface grinding is achievable on an ordinary grinder with ELID.  

However, although much attention has been paid to internal grinding, there are still 

some disadvantages in conventional internal grinding (CIG) [6]: an ultra-high speed 

grinding spindle with rotational speed up to 200 thousand rpm should be installed on 

the internal grinder, leading to an inevitable huge cost; as the spindle rotates at an 

ultra-high speed, the bearings will easily get heated and the spindle will easily 

generate vibration, resulting in difficulty in obtaining high finishing accuracy; the 

contact arc between grinding wheel and workpiece is longer than that in cylindrical or 

surface grinding, easily resulting in heavy loading of the wheel; coarse grits wheel 

should be employed to prevent the wheel from loading but a high quality finishing 

surface is difficult to get.  

Consequently, a new grinding method is required for the high precision and 

efficient processing of internal cylindrical surfaces of SiC ceramic components. 

 

1.2.2 Ultrasonic assisted internal grinding (UAIG)    

Ultrasonic-assisted grinding (UAG), a hybrid machining process combining 
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grinding and ultrasonic vibration (UV), can enhance grinding efficiency and improve 

work-surface quality owing to its decreased grinding forces and reduced wheel wear 

compared with CG [23-25]. Thus, UAG is considered to be a promising technique for 

ceramics grinding. Different types of UAG techniques, e.g., one-dimensional UAG 

(1D-UAG), two-dimensional UAG (2D-UAG), and elliptical-UAG (EUAG), have 

been proposed. In 1D-UAG, the UV is usually applied to the grinding wheel in either 

the vertical direction or parallel to the work surface. The former is called VUAG 

(vertical UAG), and the latter is called AUAG (axial UAG) [26]. VUAG is 

characterized by a much lower grinding force and higher material removal rate 

(MRR) while maintaining slightly increased wheel wear and surface roughness [27]; 

the AUAG benefits the grinding process, significantly, by decreasing the thermal load 

and improving the surface quality [28]. To combine the merits of both VUAG and 

AUAG, Liang and Wu proposed the EUAG technique [26, 29] and their experimental 

investigations involving monocrystal sapphire with a resin bond diamond wheel 

showed that the grinding forces and the work-surface roughness can be decreased by 

30% and 20%, respectively, compared to CG. To further improve the work-surface 

quality, Yan and Zhao developed the 2D-UAG technique [30, 31]. In this method, the 

UV is simultaneously applied to the workpiece from two directions; one is in the same 

direction as that of the wheel peripheral speed and the other is along the wheel axis. 

The experimental results involving nano-ZrO2 ceramics indicated that the quality of 

the work surface attained is even better than that obtained from AUAG [30]. However, 

in either EUAG or 2D-UAG, the UV must be simultaneously generated in two 

directions, resulting in complicated machining equipment structures. This further 

increases the equipment expense and multiplies the difficulty in equipment 

maintenance. Consequently, in practical UAG, the predominant approach is types of 

1D-UAG, i.e., AUAG or VUAG rather than 2D-UAG and EUAG.  

Utilizing the advantages of the 1D-UAG methods, research attempts have been 

devoted to the application of both AUAG and VUAG to hard and brittle materials. 

The results showed that the work surface quality can be greatly improved with a slight 

decrease in grinding force in the AUAG of the Al2O3 ceramic workpiece [32] 
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compared to CG; the grinding force can also be significantly reduced. Particularly, 

Mult et al. found that utilizing VUAG resulted in a slight increase in wheel wear due 

to the grinding wheel striking the machined workpiece [27]. To elucidate the material 

removal mechanism in the 1D-UAG methods, some studies focused on the change 

pattern and grinding force reduction in AUAG [33-35] by using a combination of 

numerical simulation and experimentation. Lee and Chan found that the increased 

vibration amplitude resulted in an increased MRR in AUAG due to the increased 

energy imparted to the material [35]. Zhang et al. thought the average cutting velocity 

in AUAG was higher than that in CG, which is a main factor contributing to the 

reduction of force [33]. Additionally, Farhadi et al. believed that the elimination of the 

sliding and plowing region along the cutting path during VUAG was the reason for 

force reduction, as determined by the numerical simulation investigation [34].  

On the other hand, 1D-UAG methods has been introduced into internal grinding. 

Kumabe [36, 37] performed ultrasonic assisted internal grinding (UAIG) of metal 

materials such as aluminum, copper and steel. The obtained results showed that the 

grinding efficiency was improved and grinding forces were reduced for the sake of the 

presence of UV. Wu et al. [38] found that the normal and tangential forces in UAIG of 

stainless steel were smaller by 65% and 70%, respectively, and the surface roughness 

was smaller by 20% than those in CIG. In M. Fujimoto et al.’s work [39], the 

machining characteristics of the UAIG of tungsten were experimentally compared 

with those of the CIG, showing that the normal and tangential grinding forces and the 

surface roughness in UAIG were smaller by 11%, 41%, and 53%, respectively, than 

those in CIG. This study confirms that UAIG is a highly effective processing method. 

 

1.3 Objective of the study 

Although there has been several studies focused on UAIG, most of them involved 

metal materials and little attention has been paid to the hard-brittle materials, 

especially ceramics. Further, the previous studies only revealed the fundamental 
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characteristics of UAIG, e.g. the effect of UV on the grinding forces, surface 

roughness and form accuracy, but the material removal behavior, a key to understand 

the performance of UAIG process, has not yet been explored sufficiently.  

In this study, toward the development of an alternative machining method for the 

internal grinding of SiC ceramics, the UAIG technique is applied to the internal 

grinding of SiC ceramics. For this purpose, an experimental rig was constructed by 

installing an ultrasonic spindle onto a CNC internal grinder and experimental 

investigations on the machining characteristics of SiC ceramics workpiece were 

performed on the constructed rig. As grinding force plays an influential role in 

work-surface finish in grinding process, a model is necessary for optimizing input 

variables to achieve high product quality and productivity. However, to the best of our 

knowledge, there are few reports on modeling grinding force in ultrasonic assisted 

internal grinding (UAIG). Thus, a theoretical model was presented to predict the 

grinding force in UAIG of SiC ceramics in this study. Generally, UAIG is considered 

as one type of UAG techniques. Although UAG has been extensively employed in 

manufacturing industries for processing hard and brittle materials, its potential has not 

been sufficiently developed because the material removal mechanism in UAG has not 

been elucidated. Therefore, the material removal mechanism in the UAG of silicon 

carbide (SiC) ceramics has been explored by investigating the material removal 

behaviors in ultrasonic-assisted scratching (UAS) of SiC ceramics.  

 1.4 Thesis organization 

This thesis is divided into 7 chapters. The outline of thesis organization is shown in 

Fig. 1.5.  

In chapter 1, silicon carbide (SiC) ceramics and internal grinding were briefly 

introduced. Prevailing technologies, i.e., ultrasonic assisted grinding and ultrasonic 

assisted internal grinding is outlined.  

In chapter 2, the principal of UAIG is in the foremost place and followed by the 

introduction of UAIG experimental rig. At last, experimental condition under which 
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the experiments were performed are listed. 

In chapter 3, investigations on the machining characteristics of SiC ceramics 

workpiece are performed on the constructed rig. CIG tests involving the same 

workpiece are also carried out on the same experimental rig for comparison. The 

effects of the UV on the grinding forces, the surface roughness, the form accuracy, 

and grinding wheel wear are revealed. Meanwhile, the topographic features of 

work-surfaces and the subsurface damages are observed as well to clarify the material 

removal behavior.  

In chapter 4, a theoretical model is presented to predict the grinding force in UAIG 

of SiC ceramics. This model stems from undeformed chip length resulting from the 

relative motion between the grinding wheel and the workpiece. After analyzing the 

cutting action of an active individual grain, normal and tangential force models for the 

UAIG of SiC ceramics are developed. Using the developed model, the influence of 

many grinding parameters on grinding force is predicted. Finally, the grinding force 

reduction mechanism is explored. 

In chapter 5, to deeply investigate the material removal mechanism in UAG of hard 

and brittle materials, the ultrasonic assisted scratching (UAS) tests are performed on 

SiC ceramics with a self-designed ultrasonic unit. Besides, a validated simulation 

model is developed to further investigate the differences between UAS and 

conventional scratching (CS). The combination of experimental tests and simulation 

will provide key insights into the single diamond tool scratch process that neither of 

the methods could provide on its own.  

In chapter 6, experiment investigation of UAIG of SiC ceramics from an industrial 

view is performed.  

In chapter 7, conclusions, and contributions of this research is presented. It also 

provided recommendations for further work in this direction. 

 



Ultra-fine internal grinding of SiC ceramics with the assistance of ultrasonic vibration 

 

13 

 

                      Fig. 1.5 Outline of thesis organization 
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Chapter 2   Experiment apparatus and details 

This chapter mainly focuses on the UAIG apparatus. First, the principle of UAIG is 

described. Then, in order to realize the processing principle of UAIG in practice, an 

experimental rig is constructed. The UAIG apparatus will be introduced. Before 

UAIG tests, the UV amplitude of the grinding wheel should be measured. Thereby, 

the measurement method of UV amplitude and results are presented. At last, the 

detailed experiment conditions are also listed out along with machining characteristics 

evaluation method. 

2.1 Principal of UAIG 

 

Fig. 2.1 Schematic illustration of the principle for UAIG 

 

Fig. 2.1 shows the schematic illustration the principle of ultrasonic assisted internal 

grinding (UAIG). During internal grinding operations, the metal bonded diamond 

grinding wheel rotating at a rotational speed of ng and ultrasonic vibration adding 

along its axis (frequency f, amplitude A), is fed in the workpiece radial direction at an 

infeed rate of Vc. Thus, the material of the workpiece rotating at a rotational speed of 

nw is removed by the cutting action of the wheel. In addition, an oscillation motion  

is given to the grinding wheel along its axis to improve the finishing surface.  

It is well known that the finishing accuracy is significantly affected by the truing 
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accuracy of the grinding wheel. In conventional grinding, the truing accuracy is 

hindered when using a rotary GC wheel dresser because the structure of the grinding 

wheel shaft leads to a low stiffness, therefore, it is easy to be deformed by the truing 

force [7]. In order to overcome such disadvantages, the ultrasonic assisted truing and 

dressing method was proposed, the principle is as shown in Fig. 2.2. 

      

        Fig. 2.2 Schematic illustration of the ultrasonic assisted truing and dressing 

 

As shown in Fig. 2.2, during truing and dressing operations, the GC cup wheel 

rotating at a speed of nd, reciprocates along the grinding wheel axis (x-direction) at a 

speed Vr, and is fed toward the grinding wheel in its radial direction (y-axis) at a feed 

rate of δ per reciprocation cycle. Ultrasonic vibration (frequency f, amplitude A) is 

added along the x-axis and rotation around the x-axis at a speed of ng. 

 

2.2 Experiment apparatus 

2.2.1. Ultrasonic spindle  

Fig. 2.3 shows the ultrasonic spindle used for UAIG (URT40 by Takesho Co., Ltd.). 

This spindle incorporated a rotary spindle with resonance frequency of 40kHz. The 

maximum rotational speed of the spindle is 8000rpm. The rotational speed of the 

spindle and vibration amplitude of the grinding wheel are controlled by the control 
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panel as shown in Fig. 2.4 

 

 

Fig. 2.3 Ultrasonic spindle 

 

 

Fig. 2.4 Ultrasonic spindle controller 

 

2.2.2 Grinding wheel 

 

 

 

(a) Structure of grinding wheel  
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(b)  Grinding wheel  

                    Fig. 2.5 Grinding wheel for UAIG 

Fig. 2.5 shows the grinding wheel used for UAIG tests. The diameter of the 

grinding wheel is 6mm, length is 5mm. Grinding wheel is metal bond diamond 

wheel with mesh size #140～5000, concentration 100, and grade P.   

 

2.2.2 Workpiece  

Fig. 2.6 shows workpiece used for UAIG tests. The material is SiC ceramics and 

the material properties are shown in table 1.1. Dimensional size is 12 (inner)×22 

(outer)×t13 mm.  

 

  

                  Fig. 2.6 Workpiece used for UAIG tests 
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2.2.3 Experiment setup 

 

 

                           (a) Internal grinder 

 

(b) Experimental setup detail 

Fig. 2.7 Experimental setup of UAIG 

In order to realize the processing principle of UAIG in practice, an experimental rig 

(Fig. 2.7) was constructed by installing a commercially available ultrasonic spindle 

(URT40 by Takesho Co., Ltd.), of which a grinding wheel is added onto the end face, 

on a commercially available CNC internal grinder (GRIND-X IGM15EX by Okamoto 

Machine Tool Works Co., Ltd., Fig. 2.7(a)) attached with a GC cup wheel dresser. In 

addition, a 3-components piezoelectric dynamometer (9256A by Kistler Instrument 

Corporation) was inserted between the spindle and the worktable and used for the 

Control panel 

Recorder 

Transmitter 

Charge amplifier 
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measurement of grinding forces. The coolant was supplied with a system composed of 

a nozzle, a pump and a tank.  

The workpiece infeed rate of Vc, rotational speed of nw, and oscillation motion 

speed are controlled by internal grinder via the control panel. The specifications of 

internal grinder are shown in table 2.1.  

 

Table 2.1 Specifications of internal grinder 

Ultrasonic spindle 

Frequency f (kHz) 40 

Applied voltage (%) 30～100 

Rotational speed (rpm) 0~8000 

Work chuck 
Method of support work A trio of clicks 

Rotational speed (rpm) 100~850 

Table feed 

 

Minimum amount (μm) 0.1 

Feed speed (mm/min) 0.1~10000 

 

2.3 Measurement of UV amplitude  

 

Fig. 2.8 UV amplitude measurement method 

 

Before UAIG tests, it is necessary to confirm the performance of the ultrasonic 

spindle. Fig. 2.8 shows the UV amplitude measurement method. Laser Doppler 

vibrometers (LV-1610 by Ono Sokki Co., Ltd.) was used for measuring the UV 

amplitude of the grinding wheel. Grinding wheel was screw into the end surface of 
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the UV spindle. Laser light strikes on the center of the end surface of the grinding 

wheel. Thus, the UV amplitude in the grinding wheel axial direction can be measured.  

 

 

Table 2.2 Measured UV amplitude when applied voltage=30% 

 
SD270 

P100M 

SD400 

P100M 

SD600 

P100M 

SD1000 

P100M 

SD3000 

P100M 

Measured amplitude 

A (peak-valley) (μm) 
1.8 1.9 1.8 1.8 2.0 

Measured frequency 

f  (kHz) 
40.32 39.68 40.81 39.21 39.84 

 

Table 2-3. Measured UV amplitude when applied voltage=60% 

 
SD270 

P100M 

SD400 

P100M 

SD600 

P100M 

SD1000 

P100M 

SD3000 

P100M 

Measured amplitude 

A (peak-valley) (μm) 
2.9 3.1 2.8 2.8 3.2 

Measured frequency 

f  (kHz) 
40.65 39.84 40.16 39.21 39.68 

 

Table 2-4. Measured UV amplitude when applied voltage=100% 

 
SD270 

P100M 

SD400 

P100M 

SD600 

P100M 

SD1000 

P100M 

SD3000 

P100M 

Measured amplitude 

A (peak-valley) (μm) 
4.2 4.4 4.0 4.1 3.9 

Measured frequency 

f  (kHz) 
40.16 39.68 40.00 39.21 39.86 

 

 

Table 2.2-2.3 show the measured UV amplitude when applied voltage=30%, 60%, 

and 100%, respectively. It is found that the UV amplitude increases with the 

increasing of applied voltage. 

 

2.4 Experiment detail                                                                                                                                                                                                                                                                                                          

Actual UAIG operations of SiC ceramic workpieces were conducted on the 

constructed rig under the processing parameters as shown in Table 2.2 to elucidate the 

grinding characteristics. There are 5 kinds of grinding wheel are used for UAIG tests, 

they are SD270 P100M, SD400P100M, SD600P100M, SD1000 P100M, and SD3000 



Chapter 2   Experiment apparatus and details 

 
26 

 

P100M, respectively. Prior to the grinding operations, the truing/dressing of grinding 

wheel was performed with the GC cup wheel dresser. The cylindricity and roundness 

of the workpiece ground were measured using a roundness measuring instrument 

(Rondcom55A by Tokyo Seimitsu Co., Ltd). The surface roughness of the workpieces 

were evaluated with a surface profiler (Form Talysurf Intra by Taylor Hobson Inc.). 

The topographies of work-surface and grinding wheel, the chips and the subsurface 

damages were observed by using a SEM (ERA-8900S by Elionix Co., Ltd.).  

 

Table 2.2  Processing parameters 

Ultrasonic Vibration Frequency f=40 kHz; Amplitude A=0, 4.0μm 

Grinding wheel 

SD270 P100M, SD400P100M, SD600P100M, SD1000 

P100M, SD3000 P100M. 

Oscillation motion 
Stroke: 8mm 

Speed: 0.1m/min 

Rotational speed ng (r/min) 4000,5000, 6000 

Feed rate Vc (μm/min) 5, 10, 15, 20 

Stock removal (μm) 50 

Workpiece 
SiC ceramics 12 (inner)×22 (outer)×t13 mm 

Rotational speed nw (r/min) 100, 200, 300 

Coolant Solution type, 1.6% dilution 

 

2.5 Summary  

This chapter details the related experiment rig that was employed in this study. The 

principal of UAIG is in the foremost place and followed by the introduction of UAIG 

experimental rig. After that, the UV amplitude was measured. The UV amplitude 

basically scales with regard to applied voltage. At last, experimental condition, under 

which the experiments were performed, was listed. All those are described in the 

chapter is preparatory but fundamental work for the following chapter. 
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Chapter 3 Machining characteristics of ultrasonic 

assisted internal grinding of SiC ceramics 

     

In this chapter, investigations on the machining characteristics of SiC ceramics 

workpiece were performed on the constructed rig. CIG tests involving the same 

workpiece were also carried out on the same experimental rig for comparison. The 

effects of the UV on the grinding forces, the surface roughness and the form accuracy, 

i.e., roundness and cylindricity, were revealed. Meanwhile, the topographic features of 

work-surfaces and the subsurface damages were observed as well to clarify the 

material removal behavior. In addition, considering that grinding efficiency and 

work-surface quality are, to some extent, determined by grinding wheel performance 

[1-3], the grinding wheel wear was also experimentally studied.     

 

3.1 Experiment conditions  

 

Table 3.1 Processing parameters 

Ultrasonic Vibration Frequency f=40 kHz; Amplitude A=0, 4.0μm 

Grinding wheel 

SD400P100M 6×t5 mm 

Oscillation motion 
Stroke: 8mm 

Speed: 0.1m/min 

Rotational speed ng (r/min) 4000 

Feed rate Vc (μm/min) 5, 10, 15, 20 

Stock removal (μm) 50 

Workpiece 
SiC ceramics 12 (inner)×22 (outer)×t13 mm 

Rotational speed nw (r/min) 300 

Coolant Solution type, 1.6% dilution 
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Actual UAIG operations of SiC ceramic workpieces were conducted on the 

constructed rig under the processing parameters as shown in Table 3.1 to elucidate the 

fundamental grinding characteristics. Prior to the grinding operations, the 

truing/dressing of grinding wheel was performed with the GC cup wheel dresser. 

 

3.2 Grinding forces  

 

 

Fig. 3.1 Grinding forces vs. feed rate Vc in CIG and UAIG 

 

The effect of the feed rate Vc on the grinding forces in CIG and UAIG are shown in 

Fig. 3.1. It can be figured out that both the normal force Fn and the tangential force Ft 

either in CIG or in UAIG increase monotonously with the increasing of the feed rate 

Vc. It is in particular interesting to note that either the Fn or the Ft in UAIG are much 

smaller than those in CIG; concretely, the Fn and the Ft in UAIG are smaller by 30.7% 

and 56.25% at Vc=5μm/min, 29.4% and 37.0% at Vc=10μm/min, 28.6% and 44.4% at 

Vc=15μm/min, and 26.0% and 49.1% at Vc=20μm/min, respectively, than those in 

CIG. This is the valuable information for the application of UAIG technique to the 

internal grinding of SiC ceramics. The grinding force reduction mechanism will be 

discussed in chapter 4. 



Ultra-fine internal grinding of SiC ceramics with the assistance of ultrasonic vibration 

 

29 

3.2 Form accuracy and surface roughness 

Fig. 3.2 shows the comparison of the workpiece form accuracy, i.e., roundness Er 

and cylindricity Ec, before and after CIG and UAIG at Vc=10μm/min (other 

parameters were as in table 1). It can be found from the figure that the roundness Er in 

CIG is decreased from the initial value of Er=4.6μm to the final one of Er=1.5μm by 

67.4% whereas in UAIG from Er=5μm to Er=0.7μm by 86%, indicating that the better 

roundness can be attained by UAIG and the improvement of roundness is greater 

compared with those in CIG. Shifting the attention to the cylindricity Ec, it is figured 

out that not only the final value of Ec =1.4μm in UAIG is much smaller than that of 

Ec=4.4μm in CIG but also the decrease rate of Ec in UAIG is significantly larger than 

that in CIG, i.e., 86% in UAIG against 56% in CIG. The surface roughness Ra in 

UAIG is also compared with that in CIG at Vc=10μm/min as shown in Fig. 3.3. 

Obviously, the value of Ra after UAIG is smaller than that after CIG; concretely, the 

surface roughness Ra in CIG is decreased from the initial value of 149nm to 35nm, i.e., 

a 76.5% decrease, whereas in UAIG from 146nm to 22nm, i.e., a 84.9% decrease, 

meaning that the surface quality improvement in UAIG is greater compared with that 

in CIG. The improvement of form accuracy and surface quality in UAIG can be 

considered to be the contribution of the grinding forces reduction owing to the 

presence of the UV [4].   

  

Fig. 3.2 Form accuracy in CIG and UAIG  Fig. 3.3 Surface roughness in CIG and 

UAIG  
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3.4 Work-surface integrity 

To further investigate the work-surface integrity and explore the improvement 

mechanism of work-surface quality, the topographic features of the work-surfaces 

finished by CIG and UIAG were observed with SEM. Figs. 3.4 and 3.5 exhibit the 

SEM images of the work-surfaces achieved in CIG and UAIG, respectively, at f= 

40kHz, A=4μm, SD400P100M, ng= 4000rpm, and Vc=10μm/min. As shown in Fig. 

3.4(a), the grinding marks in CIG can be distinctly seen along the grinding direction, 

and many grinding cracks are also observed on the same surface (Fig. 3.4(b)). By 

contrast, both the grinding marks and the grinding cracks are hardly observed on the 

work-surface finished by UAIG (Fig. 3.5).   

 

  

(a) Morphology of work-surface (b) Enlarged view of work-surface  

Fig. 3.4 SEM images of work-surface by CIG 

 

  

(a) Morphology of work-surface       (b) Enlarged view of work-surface  

Fig. 3.5 SEM images of work-surface by UAIG 
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Normally, the macroscopic results from the grinding process are composed of 

microscopic effects of individual abrasive grains engaging in cutting actions [5]. The 

grain-workpiece interactions in CIG and UAIG are schematically given in Figs. 3.6(a) 

and (b), respectively. In UAIG, the UV is added on the grinding wheel, and the 

abrasive grain on the grinding wheel will engage in a sinusoid movement. By contrast, 

the cutting direction of the abrasive grain is always along grinding speed direction in 

CIG as shown in Fig. 3.6(a). Therefore, the reason why grinding marks are hardly 

generated in UAIG is that the paths of different grains are interworked to form a 

knitted wool structure in the work-surface due to sinusoidal grain motion path (Fig. 

3.6(b)), leading to the higher surface quality. In addition, the reason why grinding 

cracks almost did not occur in UAIG is probably that the normal grinding force in 

UAIG is significantly lower compared with that in CIG [6].   

 

  

(a) CIG (b) UAIG 

Fig. 3.6 Schematic illustration of grain-workpiece interaction in CIG and UAIG 
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3.5 Grinding wheel wear 

  

(a) Grinding wheel topographic features 

after truing/dressing 

(b) Grinding wheel topographic features 

after CIG  

Fig. 3.7 SEM images of grinding wheel topographic features after truing 

and after CIG 

 

  

(a) Grinding wheel topographic features 

after truing/dressing 

(b) Grinding wheel topographic features 

after UAIG 

Fig. 3.8 SEM images of grinding wheel topographic features after 

turing/dressing and after UAIG 

 

To investigate the grinding wheel wear in CIG and UAIG, the SEM observation of 

grinding wheel topographic features were carried out. Figs. 3.7(a) and (b) present the 

SEM images of the grinding wheel after truing/dressing and after CIG at f= 40kHz, 

A=4μm, SD400P100M, ng= 4000rpm, and Vc=10μm/min, respectively. Most cutting 

edges disappear after the CIG even if abundant cutting edges are created after 
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dressing/truing. This suggests that the active abrasive grains drop out dramatically 

during CIG. By contrast, most of the cutting edges remain on the wheel working 

surface well even after UAIG (Compare Fig. 3.8(a) with Fig. 3.8(b)). The densities of 

cutting edges Cs on the wheel working surfaces after truing/dressing and after CIG 

and UAIG are compared in Fig. 3.9. It can be seen that although either in CIG or in 

UAIG, the Cs decreases, the decrease rate of 37.7% in CIG is much higher than that of 

13.3% in UAIG.    

 

Fig. 3.9 Abrasive grain cutting edge density in CIG and UAIG 

 

Comparing the topographic feature of the grinding wheel working surface in CIG (Fig. 

3.7) with that in UAIG (Fig. 3.8) reveals that the wheel wear in CIG is caused 

dominantly by the pullout of grains whilst in UAIG mainly by the micro-fracture as 

well as the slight grain pullout. Liang et al. [7] reported that the grain pullout and 

fracture hardly occured in UAG for the sake of the low grinding force, whereas in CG 

the severe fracture and pullout of grains occured due to the larger grinding forces. 

This suggests that compared with CIG the grinding forces in UAIG is smaller and 

thus most of the cutting edges remain on the wheel working surface well, resulting in 

higher cutting edge density in UAIG. The higher cutting edge density has a positive 

effect on the improvement of surface roughness.   
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3.6 Subsurface damage  

In most cases, the ground ceramics suffers strength degradation from the 

machining-induced subsurface damage [8]. Thus, in order to assess the subsurface 

damage, the end faces of two workpieces were carefully polished so that the defects, 

e.g., cracks and fractures, on the initial end face no longer exist on the final end faces 

after polishing, and then one of the polished workpiece was ground by CIG and the 

other by UAIG at f= 40kHz, A=4μm, SD400P100M, ng= 4000rpm, and 

Vc=20μm/min and stock removal=200μm, followed by the SEM observation of the 

end faces.  

  

(a) Workpiece end face after polishing (b)  The workpiece end face after CIG 

  

(c) Enlarged view of area 1       (d)  Enlarged view of area 2 

       Fig. 3.10 SEM images of the workpiece end face after polishing and CIG 

 

Figs. 3.10(a) and (b) show the SEM images of the workpiece end face after polishing 

and after CIG, respectively; the enlarged views of the areas 1 and 2 (Fig. 3.10(b)) are 

as in Figs. 3.10(c) and (d), respectively. It is obvious from the comparison of Figs. 

2 1 
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3.10(a) and (b) that continuous brittle fractures occur along the edge on the end face, 

and the depth of the deepest facture reaches 201μm after CIG. It is also found from 

Figs. 3.10(c) and (d) that there are micro-cracks underneath the work-surface. By 

contrast, as shown in Fig. 3.11, similar to that in CIG, the brittle fractures occur along 

the edge on the end face as well in UAIG, however, the fractures are not continuous, 

and the depth of the deepest facture is measured to be 167μm, a value which is 

smaller by 17% than that in CIG (Fig. 3.11(b)). In addition, it is found from Figs. 

3.11(c) and (d) that no micro-cracks can be observed underneath the work-surface in 

UAIG. 

 

  

(a) Workpiece end face after polishing   (b) The workpiece end face after UAIG 

  

      (c) Enlarged view of area 1       (d)  Enlarged view of area 2 

       Fig. 3.11 SEM images of the workpiece end face after polishing and UAIG 

 

Previous study found that the cracks generation strongly depended on the normal 

force level [9]. The main reason why the damage is alleviated in UAIG is attributed to 

the reduction of the grinding force as mentioned in section 3.1. Furthermore, the 

hardness of the work-surfaces after CIG and UAIG were measured with a micro 

2 1 
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hardness tester (HM124 VALPAK2000 by Akashi Co., Ltd) as shown in Fig. 3.12. It 

is evident that the work-surface obtained by UAIG is harder than that by CIG. 

Previous study found that increased hardness can effectively restrain the presence and 

growth of cracks [10]. This can be considered as the other factor leading to the 

alleviation of subsurface damage in UAIG.   

 

 

Fig. 3.12 Vickers hardness of the workpieces ground by UAIG and CIG 

 

3.7 Summary 

 In the present work, an ultrasonic assisted internal grinding technique was 

proposed for the internal grinding of SiC ceramics and the fundamental machining 

characteristics were experimentally elucidated. The following conclusions can be 

drawn:  

(1) The normal and tangential grinding force in UAIG are significantly reduced 

compared with those in CIG. This is the valuable information for the application of 

UAIG technique to the internal grinding of SiC ceramics. 

(2) The greater improvement of the form accuracy are achieved in UAIG compared 

with those in CIG, i.e., in CIG, the roundness and cylindricity of workpiece are 

improved by 67.4% and 56%, respectively, after grinding, whereas in UAIG by 86% 

for both the roundness and cylindricity;  
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(3) The roughness Ra in UAIG are significantly smaller than those in CIG, meaning 

the presence of the UV improves the surface roughness significantly. Furthermore, the 

grinding marks and the grinding cracks occurring on the work-surface can be 

restrained considerably by the presence of the UV.  

(4) Abrasive grain protrusions are observed sufficiently in UAIG. The pullout of grain 

is considered as the main wheel wear mechanism in CIG while the micro-fracture as 

well as the slight grain pullout are the dominant mechanisms in UAIG. 

(5) Observation of subsurface damage shows the fracture depth is decreased by 17% 

and cracks are alleviated, owing to the reduction of force and the increase of the 

hardness of the ground workpiece in UAIG.  
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Chapter 4 Grinding force model and force reduction 

mechanism of UAIG of SiC ceramics 

As grinding force plays an influential role in work-surface finish in grinding 

process, a model is necessary for optimizing input variables to achieve high product 

quality and productivity. However, to the best of our knowledge, there are few reports 

on modeling grinding force in ultrasonic assisted internal grinding (UAIG). In this 

chapter, a theoretical model is presented to predict the grinding force in UAIG of SiC 

ceramics. This model stems from undeformed chip length resulting from the relative 

motion between the grinding wheel and the workpiece. After analyzing the cutting 

action of an active individual grain, normal and tangential force models for the UAIG 

of SiC ceramics are developed. Using the developed model, the influence of many 

principal input variables, namely the workpiece rotational speed nw, the wheel infeed 

rate Vc, the wheel rotational speed ng, the UV amplitude Au, and the oscillation 

frequency fo, on grinding force is predicted.  

 

4.1 Introduction 

   In general, the grinding force plays an important role in grinding process as it not 

only has a direct influence on the wheel wear, grinding accuracy, grinding temperature 

and surface integrity but also strongly affects the material removal mechanism [1]. As 

for the influence of the UV on the grinding force, until now many studies have been 

concentrated on discussing the grinding force in UAG, and several grinding force 

models have been developed for UAG. Nomura et al. [2] developed a grinding force 

model for UAG by analyzing the grinding wheel-workpiece contact length and 

discussing the underformed chip cross-sectional area. Shimada et al. [3] also 

developed a force model for UAG by discussing the underformed chip cross-sectional 

area after analyzing the relative velocity between the grain and the workpiece. Qin et 

al. [4] proposed a grinding force model for the UAG of titanium and subsequently 

revealed that the tool is not in continuous contact with the workpiece and the 
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interaction between a diamond grain and the workpiece is considered as a penetration 

process, followed by establishing the relationship between the grinding force and the 

input variables.  

   Although some grinding force models for UAG were established so far as 

mentioned above, no publication is available on grinding force model for UAIG. In 

this study, in order to help understanding the material removal mechanism and 

optimizing the input variables (the workpiece rotational speed nw, the wheel infeed 

rate Vc, the wheel rotational speed ng, the UV amplitude Au and the oscillation 

frequency fo , etc.) in the UAIG of SiC ceramics, a grinding force model to predict 

relations between grinding force and input variables is developed after analyzing the 

relative motion between the grinding wheel and the workpiece. In addition, 

expressions for the normal and tangential grinding forces in UAIG are established by 

analyzing the cutting process of an active individual abrasive grain participating in 

grinding. In this study, at first, the model development approach is described in details. 

Afterwards, using the developed model, influences of the input variables on the 

grinding force are predicted. Finally, predicted results are compared with 

experimentally obtained ones to confirm the validity of the developed model.  

 

4.2 Model development approach 

            Table 4.1 Input variables in UAIG process 

Grinding wheel 

variables 

Workpiece variables UV variables Grinding process 

parameters 

Wheel width, b 

Wheel radius, Rg 

Wheel rotational 

speed, ng 

Workpiece radius, Rw 

Workpiece rotational 

speed, ng 

 

Amplitude,  Au 

Frequency,  fu 

Infeed rate, Vc 

Depth of cut, ae 

Oscillation stroke Ao 

Oscillation frequency fo 

 

   As a combination of grinding and UV, there are a number of input variables in 

UAIG process as shown in Table 4.1. Usually, the macroscopic results are composed 

of the microscopic effects, especially, the cutting action in grinding is the summation 
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of the microscopic effects of all individual abrasive grains. Many grinding force 

models were established for surface grinding by analyzing an active individual 

abrasive grain that participates in cutting and summing up the effects of all active 

abrasive particles [5, 6]. A similar approach is also used in the present work to 

develop the force model for UAIG. As shown in Fig. 4.1, the model development 

steps are as following: 

(1) Establish a relationship between input variables and undeformed chip 

cross-sectional area Acs. 

(2) Calculate the undeformed chip length Lc-UAIG by considering the relative motion 

between the grinding wheel and the workpiece in UAIG.  

(3) Analyze the cutting process of an active individual abrasive grain participating in 

grinding action and establish the tangential force and normal force model, ft and fn, 

for an individual abrasive grain. 

(4) Establish the grinding force model, i.e., the tangential force and normal force 

model, Fn-UAIG and Ft-UAIG, for UAIG process by aggregating the effects of all 

active abrasive grains.  

    

Fig. 4.1 Development process of the grinding force model for UAIG. 

 

4. 3 Model development details 

The complete description of grinding process is very difficult due to the complex 

cutting behavior of abrasive grains. Thus, prior to developing the model in details the 

major assumptions and simplifications are given as following: 

(1) All abrasive grains on grinding wheel are rigid.  

(2) Abrasive grains located on the grinding wheel surface have the same height, and 

all of them take part in cutting in the grinding process. 
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(3) Elastic/heat deflection between the grinding wheel and the workpiece and uneven 

distribution of the grains on the peripheral surface of the wheel are ignored. 

 

4.3.1 Undeformed chip cross-sectional area 

   In grinding, the total volume of the chips formed per unit time, Vchip, is the 

ensemble of the volumes formed by all individual active grains in the grinding zone 

per unit time. Consequently, the Vchip can be calculated from the average 

cross-sectional area Acs and length Lc of the undeformed chip and the number of 

active cutting grains in the grinding zone per unit time Nd as following: 

ccsdchip LANV                                                        (1) 

Letting the active cutting edge density, the grinding width and the grinding wheel 

peripheral speed be cd, b and Vg, respectively, gives 

gdd bVcN 
.
                                                       (2) 

   On the other hand, the removed material per unit time, Wm, by the wheel can be 

written as: 

wwem bnRaW 2                                                     (3) 

where ae, Rw, nw are the wheel depth of cut, the workpiece internal radius and the 

workpiece rotational speed, respectively.  

   In internal grinding, the Vchip is supposed to be equal to the Wm, resulting in a 

relationship as expressed below: 

wweccsd bnRaLAN 2                                                 (4) 

   Substituting Eq. (2) into Eq. (4) followed by rearranging yields the average 

undeformed chip cross-sectional area Acs as below: 

cggdwwecgdwwecs LnRcnRaLVcnRaA  2                               (5) 

where Rg and ng are the radius and rotational speed of the grinding wheel, 

respectively. 
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4.3.2 The undeformed chip length 

Fig. 4.2 shows the geometrical arrangement between the grinding wheel and the 

workpiece and the relative motion of the grinding wheel to the workpiece during 

UAIG. The symbols a, Rw0 stand for the distance between the centers of the 

workpiece and the grinding wheel at grinding start point and the initial radius of 

workpiece before grinding, respectively. Let a xyz-coordinate system be fixed on the 

workpiece; the x-axis is along the grinding wheel infeed direction, the y-axis is 

perpendicular to the wheel infeed direction, and the z-axis is along the workpiece axis. 

The origin point o is fixed at the center of the workpiece. It can be seen from the 

figure that in the UAIG, the grinding wheel has five different relative motions to the 

workpiece, i.e., a infeed motion in x-axis at the infeed rate of Vc , a rotation around its 

own axis at the speed of ng, a revolution motion around z-axis at the speed of nw, an 

UV in z-axis at the frequency of fu and the amplitude of Au, and an oscillation in z-axis 

at the frequency of fo and the stroke of Ao. It can be figured out that owing to the spiral 

relative motion of the wheel to the workpiece caused by the simultaneous presence of 

the wheel infeed motion and the workpiece rotation motion (i.e., the wheel revolution 

motion around z-axis), the profile of the workpiece internal surface would be shaped 

to be spiral as shown in Fig. 4.2(a).    

 

 
 

        (a) yz-plane               (b) xy-plane 

 Fig. 4.2 Geometrical arrangement between grinding wheel and workpiece. 
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Fig. 4.3 Relative motion between the grinding wheel and the workpiece.  

 

Under the presence of the five relative motions, the instantaneous geometrical 

relationship between the workpiece and the grinding wheel at grinding time t0, i.e., 

after grinding for time t0 is supposed to be as shown in Fig. 4.3. At this moment, the 

xy-coordinates of the grinding wheel center og0 are x0=a+Vct0, y0=0. Then after the 

grinding is further performed for time t (=t1-t0), the grinding wheel center moves to 

point og1 at time t1 and its xy-coordinates at this moment become 

x1=a+Vct1-(a+Vct0)cos(2πnw(t1-t0)), y1=(a+Vct0)sin(2πnw(t1-t0)), resulting in an 

equation expressing the wheel circumference profile at time t1 as follow. 

22

010

2

0101 )](2sin()([))](2cos()([ gwcwcc RttntVayttntVatVax     (6) 

In the meantime, the spiral work internal surface can be expressed with following 

equation. 

)2sin()(

)2cos()(

tntRy

tntRx

ww

ww








                                                  (7) 

where tVRtR cww  0)( . 

By replacing time t in Eq. (7) with time t1 and substituting Eq. (7) into Eq. (6), the 

Eq. (6) can be rewritten as:  

22

010

110

2

0101110

)](2sin()(

)2sin()[())](2cos()()2cos()[(

gwc

wcwwccwcw

RttntVa

tntVRttntVatVatntVR








 

(8) 

Subsequently the value of t=t1-t0 that is the time period during which the abrasive 

grain G takes part in the cutting action at point P0 at time t0 and gets out of the action 
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at point P1 at time t1 (Fig. 4.3) can be obtained from Eq. (8) once the input variables a, 

Rw0, nw, ng, Vc, Au, fu, Ao, fo, and t0 have already been determined. For instance, at 

a=3mm, Rw0=6mm, nw=300rpm, ng=4000rpm, Vc=10μm/min, Au=4μm, fu=40kHz, 

Ao=4mm, fo=0.625Hz and t0=75s, the value of t1 can be obtained to be 75.0057s by 

solving the Eq. (8) in numerical calculation technique using a commercial software, 

Matlab; subsequently, t=t1-t0=0.0057s. 

  As the abrasive grain G is at the point P0 (x=a+Rg+Vct0, y=0, z=0) at time t0 when 

it takes part in the cutting action, then at time t (t0≤t≤t1) its coordinates are obtained as 

Eq. (9) from the geometrical relationship shown in Fig. 4.3.   


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Differentiating Eq. (9) with respect to t, gives                                                               
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 (10) 

Subsequently, the undeformed chip length in UAIG Lc-UAIG can be determined by 

the following equation.  
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                                                                 (11) 

The CIG process can be considered as a special case of UAIG process when Au=0. 

Thus, the undeformed chip length in CIG Lc-CIG can be obtained by substituting Au=0 

into Eq. (11). 

 

4.3.3 The force model  

   Fig. 4.4(a) shows a simplified cutting force model for a single abrasive grain in 

UAIG. According to [6], the tangential and normal cutting forces, ft and fn, acting on 

the grain can be determined as the function of the undeformed chip cross-sectional 
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area Acs, i.e.,  

csn kAf                                                           (12) 

cst kAkf 1                                                         (13)  

Where k is the chip thickness coefficient, and k1 is the ratio of the tangential force to 

the normal force. 

 

(a) Forces on the grain 

 

(b) Cutting trace and force direction variation 

     Fig. 4.4 Simplified cutting force model for a single abrasive grain in UAIG. 

  

As the ultrasonic vibration period is extremely small compared with the oscillation 

period, sinusoidal cutting traces of abrasive grains can be hence approximately 

generated on the work-surface in UAIG as shown in Fig. 4.4(b). This means that the 

direction of the tangential force ft varies in a sinusoidal pattern and the ft can be 

separated into two components along y- and z-axes, respectively, i.e., fy and fz (Fig. 

4.4(b)), as following:  













sin

cos

tz

ty

ff

ff
                                                      (14) 

where θ is the engagement angle and given by: 
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)(tan))()((tan dydztVtV yz

11                                       (15) 

where Vy(t) and Vz(t) are velocities in y- and z-axes, respectively, which can be 

obtained by Eq. (10). Subsequently the θ can be determined by substituting Eq. (10) 

into Eq. (15). For instance, under the input variables of nw=300rpm, ng=4000rpm, 

Vc=10μm/min, Au=4μm, fu=40kHz, Ao=4mm, fo=0.625Hz, and in one UV period, the θ 

would be in the range of [-50.2°, 50.2°] according to Eq. (15). 

It is deduced from Eqs. (14) and (15) that the force fz periodically changes in 

z-direction within the certain range of θ, resulting in the mean force fz in one UV 

period being almost zero. Therefore, hereafter only the forces in x- and y-directions, 

i.e., tangential and normal forces, are considered.  

As mentioned above, the forces in x- and y-directions are fluctuating periodically. It 

is helpful for dealing with the fluctuating forces to introduce the average value of the 

fluctuating one. In addition, the resultant grinding forces acting on the grinding wheel 

are the sum of the forces acting on all active grains within the grinding zone. 

Following the calculation method of the average force [7], the average value of the 

normal force and the tangential force, Fn-UAIG and Ft-UAIG, during the time period Δt(= 

t1-t0) in UAIG, can be written as:    
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                     (16) 

where N is the total number of active cutting edges in grinding zone and can be 

obtained with Eq. (17) [1]:  

cdblcN                                                          (17) 

where lc is the grinding wheel-workpiece contact length which can be determined 

with Eq. (18) ([6]): 

)(tRR

aR
l

wg

eg

c



1

2
                                               (18)

 

By substituting Eqs. (5), (12-15), (17), (18) into Eq. (16), the normal force and the 

tangential force, Fn-UAIG and Ft-UAIG, at time t0, can be written as:  
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where Lc-UAIG can be obtained by Eq. (11). As mentioned above, the CIG process is a 

special case of UAIG process with Au=0, hence θ=0°. Thus, the tangential force Ft-CIG 

and the normal force Fn-CIG in CIG can be obtained by substituting Au=0 and θ=0 into 

Eq. (19). 
 

 

4.4. Grinding force reduction mechanism in UAIG 

Table 4.2  Experiment condition 

Ultrasonic Vibration Frequency f=40 kHz; A=0μm, 2μm, 4μm 

Grinding wheel 

SD400P100M,φ6×t5 mm 

Oscillation motion 
Stroke: 10mm 

Speed: 0.1m/min 

Feed rate Vc 10μm/min,  

Stock removal 25μm 

Rotational speed  4000rpm 

Workpiece 
Rotational speed 300rpm 

SiC ceramics φ12(inner)×φ22(outer)×t13 mm 

Coolant Solution type，1.6%dilution 
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(a) A=0μm 

 

                            (b) A=2μm 

 

                           (c) A=4μm 

Fig. 4.5 SEM images of chips formed in CIG and UAIG 
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                 Fig. 4.6 Cross-scetional area Acs vs. amplitude A 

 

It is inferred from Eq. (16) that the larger cross-sectional area Acs is, the larger the 

grinding forces become. The reason why the grinding forces in UAIG are reduced 

compared to CIG may also be ascribed to the smaller chip cross-sectional area in 

UAIG compared with that in CIG. If this reason holds, the sizes of chip 

cross-sectional area formed in UAIG ought to be smaller than those in CIG. In order 

to confirm this issue, the chips formed both in CIG and in UAIG of SiC ceramics 

were gathered and examined by SEM under the condition as shown in Table 4.2. Fig. 

4.5 shows the SEM images of chips formed in CIG and UAIG. Fig. 4.6 shows 

variation of the cross-sectional area of the chips formed in CIG and UAIG measured 

by 3D-SEM. It is found that the mean cross-sectional area of the chips decreases with 

the increasing of amplitude A. This phenomenon was also found under other grinding 

parameters. This means that the undeformed chip cross sectional area in UAIG is 

smaller than that in CIG, eventually confirming the above mentioned reason.      
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4.5  Grinding forces predictions and model verification  

4.5.1 Experimental determination of parameters k and k1 

   According to Eq. (19), it is essential to determine the actual values of the chip 

thickness coefficient, k, and the ratio of the tangential force to the normal force, k1, to 

predict the grinding forces quantitatively. Although the k and k1 are independent of the 

input variables and hence their values can be determined by only one round of 

grinding test under a certain set of input variables in principle, 5 rounds of grinding 

tests were performed under different sets of input variables as shown in Table 4.3 and 

the average of 5 data obtained either for the k or for the k1 was adopted to indicate the 

k or the k1 in order to avoid the deviation due to the input variables. In the current 

work, the other input variables are kept constant at fu=40 kHz, Ao=4mm, fo=0.625Hz, 

Rw0=6mm, Rg=3mm, ae=0.1μm, b=5mm, and radial stock removal of 25μm.  

 

Table 4.3 Experimental conditions for obtaining k and k1 

Test No. ng (rpm) nw (rpm) Au(μm) Vc (μm/min) 

1 4000 300 4 10 

2 4000 200 4 10 

3 5000 300 4 10 

4 4000 300 3 10 

5 4000 300 4 15 

      

 

Fig. 4.7 Value of k and k1 obtained in all of the tests 
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In each test, the corresponding grinding forces, Fn-UAIG and Ft-UAIG, were obtained. 

Substituting the obtained values of Fn-UAIG and Ft-UAIG and all input variables (t0 =75s) 

into Eq. (19) followed by re-ranging yielded the values of k and k1. Fig. 4.7 shows the 

values of k and k1 obtained in all of the tests. It can be figured out that there are not 

strong correlations between the input variables and the values of k and k1, and the 

average values of k and k1 were 3.49×10
10

(N/m
2
) and 0.413, respectively. 

Consequently, in the present work, the grinding forces in UAIG and CIG at time t0 

can be expressed with Eqs. (20) and (21), respectively, by substituting 

k=3.49×10
10

(N/m
2
) and k1=0.413 into Eq. (19).  
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4.5.2 Grinding forces predictions and model verification 

To verify the grinding force model, CIG and UAIG tests under the input variables 

of nw=300rpm, ng=4000rpm, Vc=10μm/min, Au=0/4μm, fu=40kHz, Ao=4mm, and 

fo=0.625Hz were performed and the forces prediction was also carried out under the 

same input variables using Eqs.(20) and (21) for comparison. The experimentally 

obtained and predicted variations of the grinding forces during grinding are plotted in 

Fig. 4.8 (the subscripts -P and -E stand for the predicted force and the experimental 

one, respectively). Comparing the predicted forces with the experimental ones shows 

that although there are somewhat quantitative differences between them which is 

probably caused by the lack of the inclusion of some input variables, e.g., coolant, 

wheel loading, etc. in the development of grinding force model, the variation 

tendencies and the quantitative values of the predicted forces agree reasonably with 

those of the experimental ones, both in CIG and in UAIG process. This fact validated 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%ae&tjType=sentence&style=&t=difference
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the developed force model. It is also found from Fig. 4.8 that the grinding forces 

increase with the increasing of the grinding time t0 both in CIG and UAIG within the 

tested grinding period in the current grinding conditions. 

 

 

Fig. 4.8 Grinding forces versus time t0 in UAIG and CIG tests. 

 

Subsequently, to explore the influences of the input variables on the grinding forces, 

CIG and UAIG tests were performed under different input variables and the grinding 

forces at t0 =75s were picked up. As a result, Fig. 4.9 shows the influences of the input 

variables Vc, ng, nw, Au, fo on the grinding forces in UAIG and CIG predicted using 

Eqs. (20) and (21) and obtained experimentally. Obviously, the variation tendencies 

and the quantitative values of the predicted forces also agree well with those of the 

experimental ones, regardless of the input variables either in CIG or in UAIG. It is 

also found from Fig. 4.9 that the grinding forces increase with the increasing of nw 

and Vc, but decrease with the increasing of ng, Au and fo; the influences of ng, nw and 

Vc are strong, whereas that of Au and fo are significantly weak. Furthermore, it is 

noticed that the forces in UAIG are significantly smaller than those in CIG, meaning 

the presence of the UV affects the grinding forces significantly. It is inferred from Eqs. 

(20) and (21) that the shorter the undeformed chip length Lc-UAIGt or Lc-CIG is, the larger 

the grinding forces become. The undeformed chip lengths Lc-UAIG in UAIG and Lc-CIG 

in CIG were calculated with Eq. (11) for various input variables as shown in Fig. 4.10. 

It is evident that the values of Lc-UAIG in UAIG are larger than those of Lc-CIG 

regardless of the input variables, indicating the reason why the grinding forces in 
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UAIG are smaller than those in CIG can also be ascribed to the longer undeformed 

chip lengths in UAIG. 

 To evaluate the effect of UV on the grinding forces, force reduction rates were 

defined as ηn=(1- Fn-UAIG /Fn-CIG)×100 (%) and ηt=(1- Ft-UAIG /Ft-CIG)×100 (%) for 

normal and tangential forces, respectively. The values of ηn and ηt were obtained for 

different input variables using Eqs.(20) and (21) as shown in the same figure with the 

undeformed chip length, i.e., Fig. 4.10. Evidently, the ηn and ηt decrease with the 

increasing of ng, nw and Vc, whereas increase with the increasing of Au and fo. In the 

other words, the effect of UV on the grinding force reduction can be enhanced with 

the decreasing of ng, nw and Vc, but increasing of Au and fo.  

 

  

(a) Influence of grinding wheel rotational 

speed ng  

(nw=300rpm, Vc=10μm/min, Au=4μm, 

fo=0.625Hz) 

(b) Influence of workpiece rotational 

speed nw  

(ng=4000rpm, Vc=10μm/min, Au=4μm, 

fo=0.625Hz) 

 

  

(c) Influence of feed rate Vc  

(ng=4000rpm, nw=300rpm, Au=4μm, 

fo=0.625Hz) 

(d) Influence of UV amplitude Au 

(ng=4000rpm, nw=300rpm, Vc=10μm/min, 

fo=0.625Hz) 
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(e) Influence of oscillation frequency 

(ng=4000rpm, nw=300rpm, Au=4μm, 

Vc=10μm/min) 

 

Fig. 4.9  Relations between grinding forces and process parameters 

 

  

(a) Influence of grinding wheel rotational 

speed ng.  

(nw=300rpm, Vc=10μm/min, Au=4μm, 

fo=0.625Hz) 

(b) Influence of workpiece rotational 

speed nw.  

(ng=4000rpm, Vc=10μm/min, Au=4μm, 

fo=0.625Hz) 

  

(c) Influence of feed rate Vc  

(ng=4000rpm, nw=300rpm, Au=4μm, 

fo=0.625Hz) 

(d) Influence of UV amplitude Au 

(ng=4000rpm, nw=300rpm, 

Vc=10μm/min, fo=0.625Hz) 
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(e) Influence of oscillation frequency fo 

 (ng=4000rpm, nw=300rpm, Au=4μm, 

Vc=10μm/min) 

 

Fig. 4.10 Comparison between the underformed chip length and the force reduction 

rate for different process parameters.   

 

4.6. Conclusion  

In this study, a grinding force model for UAIG of SiC ceramics has been developed. 

The model incorporates input variables of the grinding process and the UV. 

Comparing the forces predicted using the developed model with the experimental 

ones shows that the variation tendencies and the quantitative values of the predicted 

forces agreed reasonably with those of the experimental ones. Relationships between 

the input variables and the grinding forces in UAIG can be concluded as following:    

(1) The grinding forces increase in the grinding process. Furthermore, the grinding 

forces are reduced in the UAIG compared to CIG, which is attributed to the formation 

of the smaller the undeformed chip cross sectional area. 

(2) The grinding forces increase with the increasing of nw and Vc, whereas 

decrease with the increasing of ng, Au and fo; the influence of ng, nw and Vc on grinding 

force are much pronounced, whereas that of Au and fo are not very noticeable.  

(3) The force reduction of UV can be enhanced either by decreasing ng, nw and Vc 

or increasing Au and fo. 

   This model can be reliably used for predicting the grinding forces in UAIG of SiC 

ceramics. It also can be severed as a useful springboard for development of more 

sophisticated UV assisted cutting force models. 
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Chapter 5 Material removal behavior in 

ultrasonic-assisted scratching of SiC ceramics with a 

single diamond tool 

 

Generally, UAIG is considered as one type of UAG techniques. Although  

ultrasonic-assisted grinding (UAG) has been extensively employed in manufacturing 

industries for processing hard and brittle materials, its potential has not been 

sufficiently developed because the material removal mechanism in UAG has not been 

elucidated. In this chapter, to deeply investigate the material removal mechanism in 

UAG of hard and brittle materials, the ultrasonic assisted scratching (UAS) tests are 

performed on SiC ceramics with a self-designed ultrasonic unit. Besides, a validated 

simulation model is developed to further investigate material removal mechanism tin  

UAS. The combination of experimental tests and simulation will provide key insights 

into the single diamond tool scratch process that neither of the methods could provide 

on its own.  

 

5.1 Introduction 

Although many studies focusing on applying UAG methods to hard and brittle 

materials have been reported, the UAG material removal mechanism, in particular for 

SiC ceramics, has not yet been sufficiently explored. Normally, the macroscopic 

results from the grinding process are composed of microscopic effects of individual 

abrasive grains engaging in cutting actions [1]. Single-grain scratching tests, using an 

idealized tool, have been commonly used to investigate the behavior of material 

removal in abrasive machining. The material deformation/fracture patterns arising 

from the surface morphologies of the scratch provide primary information for 

determining material removal behavior [2-5]. In the current work, therefore, an 



Chapter 5 Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool 

 
60 

 

ultrasonic-assisted scratching (UAS) test was performed on SiC ceramics with an 

in-house-produced ultrasonic unit to investigate the material removal behavior of the 

UAG on this kind of hard and brittle material. The differences between the material 

removal characteristics in UAS and conventional scratching (CS) without UV were 

investigated to provide a comprehensive understanding of the material removal 

mechanism in the UAG of SiC ceramics. This article describes the design of the tests, 

the construction of the experimental setup, and experimental investigations of 

material removal characteristics in UAS and CS, accompanied by detailed 

discussions. 

 

5.2 Operation principle and kinematic characteristics of UAS 

5.2.1 Operation principle  

  

(a) Processing principle (b) Motion trajectory of an abrasive grain 

on workpiece 

Fig. 5.1 Schematic diagram of the UAG. 

 

Figs. 5.1 (a) and (b) show the schematic illustrations of the processing principle of 

UAG and the motion trajectory of an abrasive grain on the workpiece due to the UAG, 

respectively. The UV is dominantly applied to the grinding wheel in its own axial 

direction, i.e., the z-axis, at a frequency f and an amplitude Aa; however, due to the L 
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(longitudinal)-R (radial) crosstalk effect, another UV is, in practice, simultaneously 

generated in the radial direction at the same frequency f but with a much smaller 

amplitude Ar. Therefore, this kind of UAG is just the combination of AUAG and 

VUAG. Once a cut wheel depth ae is set between the wheel and the workpiece, the 

wheel then is rotated at a speed ng followed by a feed motion of the workpiece along 

the x-axis at a feed rate of Vw, the UAG operation is performed. In the UAG processes, 

the motion trajectory of an arbitrary abrasive grain, p, generated on the work surface 

is represented by a spatial spiral line, as shown in Fig. 5.1(b).  

 

 

Fig. 5.2 Schematic diagram of ultrasonic assisted scratching (UAS). 

 

To explore the material removal mechanism in this kind of UAG process, a UAS 

test using a single diamond tool was designed and performed. Fig. 5.2 schematically 

illustrates the operation principle of the UAS test. The diamond tool is moved right 

along the line LUASOUASRUAS, which is parallel to the disc-shaped workpiece diameter 

LOR at a distance d at a speed Vs. Considering that the wheel is ultrasonically 

vibrated in its axial and radial directions simultaneously in UAG, the diamond tool is 
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also ultrasonically vibrated in two directions, i.e., the y- and z-axes, simultaneously, at 

the same frequency f but different amplitudes Ay and Az in the UAS test. In addition, 

as observed in Fig. 1(b), in the UAG the grain depth of cut, initially, is zero when the 

abrasive grain starts its cutting action and gradually increases to reach its peak value 

(maximum depth of cut), eventually the depth reaches zero again once the grain 

leaves the workpiece; the workpiece used in the UAS test was pre-shaped by 

polishing into a conic mountain with an elevation angle α. Thus, the tilt angles of the 

lines LUASOUAS and OUASRUAS are α’ and −α’, respectively, leading to the gradual 

increase and then decrease in the mean tool depth of cut during UAS. This means that 

the mean tool depth of cut increases from zero at LUAS to maximum value at OUAS, 

which decreases to zero again at RUAS. For comparison, a CS test without UV was 

also performed by moving the tool along the line LCSOCSRCS on the same workpiece 

at the same speed Vs used in UAS. The line LCSOCSRCS is parallel to the workpiece 

diameter LOR at a distance d, which is the same as LUASOUASRUAS. 

 

5.2.2 Kinematic characteristics 

Essentially, the cutting action in the scratching process is a physical interaction 

between the tool and the workpiece. Therefore, it is crucial to clarify the kinematic 

characteristics of the tool in the UAS test to thoroughly understand the material 

removal behaviors in the UAS process. 

Let the xyz-coordinate system (Fig. 5.1) be fixed on the workpiece and its origin 

be at the scratching start point in the UAS test (the point LUAS in Fig. 5.2), thus the 

xyz-coordinates of the cutting point of the ultrasonically vibrating tool at time t can be 

expressed by Eq. (1) when assuming the initial xyz-coordinates of the tool cutting 

point are (0, 0, 0) at time t = 0.  
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The velocities of the tool in the x-, y- and z-directions at time t, Vx(t), Vy(t) and Vz(t), 

respectively, can hence be expressed by Eq. (2) by differentiating Eq. (1) with respect 

to time t. 
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For instance, the variations of the displacement and velocity of tool in one UV 

period T in y- and z-directions under the condition of Vs=0.5m/s, f=14.3kHz 

(T=69.9μs), Ay=0.125μm, and Az=0.6μm are obtained using Eqs. (1) and (2) as shown 

in Fig. 5.3. Due to the UV in y-direction, as shown in Fig. 5.3(a), the tool moves 

upward (from 0 to 17.5μs and from 52.5 to 69.9μs) and downward (from 17.5 to 

52.5μs) alternatively in the cutting process, leading to the depth of cut in UAS varying 

periodically and its maximum value being greater than that in CS. Turing to 

z-direction as shown in Fig. 5.3(b), the sinusoidal cutting trace of the tool is generated 

owing to the UV of the tool. Moreover, due to the sinusoidal variations of the 

velocities in y- and z- directions, the impact effects of the tool on the workpiece are 

generated [6].   

 

  

(a) y-direction                (b) z-direction 

Fig. 5.3 Kinematic characteristics of the tool in the UAS process 

 

In the UAS process, due to the simultaneous application of the UV in the 

y-direction (frequency f, amplitude Ay) and the tool’s linear motion in the x-direction 

(speed Vs), the nominal tool depth of cut, h(t), at time t can be expressed as:  
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In Eq. (3), h(t) = 0 means the cutting action does not occur. Thus, in the UAS 

process, there are two scratching modes with different contact situations between the 

tool and the workpiece (Fig. 5.4(a)): one is intermittent scratching where the condition 

Vs tanα’ t ≤ Αy is met, and the other is continuous scratching where the condition Vs 

tanα’ t >Αy is met.  

Shifting the attention to the tool trajectories in the xz-plane (Fig. 5.4(b)), due to the 

simultaneous application of the UV in the z-direction (frequency f, amplitude Az) and 

the tool’s linear motion in the x-direction, the nominal width of the groove, w(t), at 

time t can be expressed as: 
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where r(t) is the major radius of the elliptic plane generated when the tool and the 

workpiece intersect at time t (Fig. 5.4(b)). In the current work, as the angle α’ is 

extremely small, the elliptic intersecting plane can be assumed to be a circular plane 

with a radius of r(t) and it can be obtained from the geometric arrangement between 

the tool and the workpiece, as shown in Fig. 5.4(a) and as represented below:  
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where R is the nose radius of the diamond tool. 

The CS process can be considered as a special case of the UAS process where Ay = 

0 and Az = 0. Thus, there are no relative motions between the tool and the workpiece 

in y- and z-directions, and the nominal width of the groove, w(t)- CS, in the CS process 

can be written as: 

　2 22 )]tan([)( tVRRtw sCS                                        (6) 

Eqs. (4)–(6) could yield the nominal groove widths in the CS and UAS processes. 
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(a) in xy-plane 

  

(b) in xz-plane 

    Fig. 5.4 Schematic illustration of the tool trajectories produced in UAS and CS. 

 

5.3 Experimental details 

5.3.1 Experimental setup and procedure 

Based on the operation principle of UAS, an experimental setup was constructed 

for scratching tests that is schematically illustrated in Fig. 5.5. An in-house-produced 

ultrasonic unit, which had a cone-shaped single diamond tool with a vertical angle of 

80° and a nose radius of 15 m attached to its lower end face, was installed on the 

wheel head of an existing NC (Numerical Control) surface grinder (SGT-315RPA by 

Nagase Integrex Co., Ltd.). A disc-shaped SiC ceramic workpiece (30 mm  t5 mm) 

with a surface roughness of 10 nmRa and elevation angle  = 0.018° was held on the 

worktable via a 3D dynamometer (9256A by Kistler Co., Ltd.). The ultrasonic unit 



Chapter 5 Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool 

 
66 

 

was constructed by bonding a PZT (piezoelectric ceramic) device onto a metal 

(SUS304) elastic body. A wave function generator (WF1944 by NF Corporation) and 

two power amplifiers (4010 by NF Corporation) were employed to generate two AC 

voltage phases that were applied to the PZT to make the diamond tool ultrasonically 

vibrate in two directions, i.e., the y- and z-axes, simultaneously. The vibration 

amplitudes of the tool were measured with two laser Doppler vibrometers (LV-1610 

by Ono Sokki Co., Ltd.) for the respective UVs in the y- and z-axes; the UV 

amplitudes (peak-valley) were 1.2 μm in the z-axis and 0.25 μm in y-axis under an AC 

voltage with a frequency f = 14.3 kHz and an amplitude Vp−p = 50 V.  

 

 

 Fig. 5.5 Schematic diagram of experimental setup. 

 

For scratching tests, the scratching speeds, Vs, in either CS or UAS were actually 

obtained by moving the worktable left along the x-axis at a given speed of Vs = 0.5 

m/s while keeping the tool stationary. The elevation angle of  = 0.018° resulted in ’ 

= 0.015° in the case of d = 2.5 mm and the distance from point O to the straight line 

LR = 4 μm (Fig. 5.2). To understand the material removal mechanism in CS and UAS 

for SiC ceramics, the behaviors of the material deformation/fracture and the 

scratching forces were investigated. The former was performed by observing the 

grooves formed on the work surface with a SEM (ERA-8900S by ELIONIX Co., 
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Ltd.), and the latter was conducted by measuring the x-, y-, and z-components of 

scratching forces with the 3D dynamometer. Before SEM observation, the workpiece 

was carefully cleaned with an ultrasonic cleaner (US-2 by NSD Co., Ltd.) until the 

chips that formed during the scratching process were completely removed from the 

work surface. 

 

 

Fig. 5.6 Schematic diagram of the observation regions along the grooves formed in 

CS and UAS tests. 

 

Due to the tilt of the work surface at angle α’ (Fig. 5.2), the mean tool depth of cut 

varies gradually during CS (or UAS) from point LCS (or LUAS) to point OCS (or OUAS) 

and further to point RCS (or RUAS); thus, in the first half (from LCS (or LUAS) to OCS (or 

OUAS)) the grooves were formed by different material removal modes, i.e., plastic 

deformation, ductile removal or brittle fracture. To compare the scratching forces and 

the material removal behaviors in different removal modes, four distinct regions along 

each groove were selected for SEM observations and force studies. Fig. 5.6 depicts 

the locations of the selected regions where aCS, bCS, cCS, and dCS denote the plastic 

deformation, ductile removal, ductile–brittle hybrid removal, and brittle fracture 

regions, respectively, for the CS test; the left ends of these regions are at distances of 

rCS, rCS+lCS−0+lCS−1, rCS+lCS−0+lCS−2, and rCS+lCS−0+lCS−3 from the rim of the workpiece, 

respectively. The corresponding regions in the UAS test are denoted with aUAS, bUAS, 

cUAS, and dUAS, and they are at distances of rUAS, rUAS+lCS−0+lUAS−1, rUAS+lCS−0+lUAS−2, 
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and rUAS+lCS−0+lUAS−3, respectively, from the rim of the workpiece.  

 

5.4 Experimental results and discussions 

5.4.1 SEM observation of scratching grooves 

       

(a) Along line LCSOCS (as shown in Fig.5.6) in CS  

       

(b) Along line LUASOUAS (as shown in Fig.5.6) in UAS  

Fig. 5.7 Macroscopic SEM images of the grooves generated along line LCSOCS in CS 

and line LUASOUAS.   

 

Firstly, to determine the locations of the regions, SEM observation was carried out 

on the workpiece after scratching with and without UV. Figs. 5.7(a) and (b) show the 

macroscopic SEM images of the grooves generated along line LCSOCS in the CS test 

and along line LUASOUAS in the UAS test, respectively; thus, indicating that the values 

of rCS, rUAS, lCS−1, lCS−2, lCS−3, lUAS−1, lUAS−2, and lUAS−3 can be determined to be rCS = 

2.9 mm, rUAS = 2.6 mm, lCS−0 = lUAS−0 = 0.1 mm, lCS−1 = lUAS−1 = 0.5 mm, lCS−2 = 1.2 

mm, lUAS−2 = 1.5 mm, and lCS−3 = lUAS−3 = 7.5 mm, respectively.  

Next, microscopic SEM images were obtained for all the groove regions generated 

from the CS and UAS tests to distinguish the differences between the material 

removal behaviors in CS and UAS in detail. Figs. 5.8(a)–(d) show the microscopic 
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SEM images in different regions of the groove formed in the CS test. The figures 

show that a straight groove was obtained from CS, in which different material 

deformation/fracture behaviors occurred along the scratching trace. In region aCS (Fig. 

5.8(a)), the groove started to form at the start point and its surface was smooth (see 

the close-up), indicating that the groove was predominantly formed due to the plastic 

deformation and/or ductile removal mode owing to insufficient compressive stress 

and shear stress to induce cracks [7]. As tool depth of the cut increases, a deeper and 

wider groove was achieved in region bCS (Fig. 5.8(b)) compared to region aCS; the 

groove surface is smooth, suggesting the material removal behavior in this region is 

plastic deformation and/or ductile removal. However, as observed in Fig. 5.8(c), 

obvious macro-brittle fractures and cracks were generated at the position closest to the 

far right of region cCS, indicating that a ductile–brittle transition occurred in this 

region and the critical depth of cut can be determined by measuring the groove depth 

at position C, which is at the front left area of the macro-brittle fractures. As the tool 

depth of cut further increases, macro-fractures and macro-cracks successively 

occurred in region dCS over the entire groove, as shown in Fig. 5.8(d), indicating the 

material has been removed with a brittle removal mode due to the cooperative action 

of the high compressive stress and shear stress [8].  

By contrast, as observed in Figs. 5.9(a)–(d), the material removal behaviors in UAS 

differ from those in CS. Fig. 5.9(a) indicates that the groove first appeared at the start 

point in region aUAS; however, the groove is intermittent and comprises a series of 

local scratches. It is also observed that the groove surface was smooth, indicating that 

the scratching mode was predominantly ductile; the groove in region bUAS (Fig. 

5.9(b)) was comprised of a string of local scratches similar to that in region aUAS, but 

the scratches were deeper and wider compared to region aUAS. The generation of the 

intermittent grooves is supposedly due to the intermittent penetration of the tool into 

the workpiece under the presence of UV as mentioned in section 2.2. In addition, the 

local scratches that had smooth surfaces indicate that the plastic deformation and/or 

ductile removal mode occurred in this region. As the tool reaches region cUAS, the 

groove becomes continuous, as shown in Fig. 5.9(c), because the tool depth of cut is 
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larger than the UV amplitude in the y-direction. Therefore, the UAS process can 

generally be separated into two scratching modes: intermittent and continuous 

scratching. It is also found from Fig. 5.9(c) that the first macro-brittle fracture 

appeared at the far right of region cUAS and the groove depth at position C is equal to 

the critical depth of cut, meaning that a ductile–brittle transition occurred in this 

region. As the tool moves further into region dUAS (Fig. 5.9(d)), many macro-brittle 

fractures and cracks can be observed in the groove, suggesting that the brittle fracture 

mode was the main material removal behavior in this region. Compared to CS process 

results, it is found that the UAS process results in large-scale material removal from 

the lateral sides of the groove (appearing as serrations), i.e., lateral brittle fractures 

and cracks, as shown in Fig. 5.9(d). Furthermore, the profile of the groove indicates 

that the scratching trace of tool appears sinusoidal when ultrasonic vibration is 

applied.  
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(a) Region aCS 

 

(b) Region bCS 

 

(c) Region cCS 

 

(d) Region dCS 

Fig. 5.8 SEM images in different regions of the grooves formed in the CS. 
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(a) Region aUAS 

 

(b) Region bUAS 

 

(c) Region cUAS 

 

(d) Region dUAS 

Fig. 5.9 SEM images in different regions of the grooves formed in the UAS. 
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5.4.2 Cross-sectional profiles and depths/widths of grooves 

To quantitatively investigate the material removal behaviors in CS and UAS, the 

cross-sectional profiles and the depths/widths of the grooves at different locations 

with different removal modes, i.e., ductile (regions bCS and bUAS), ductile–brittle 

transition (regions cCS and cUAS), and brittle (regions dCS and dUAS) modes were 

obtained with the 3D function of the SEM.  

Fig. 5.10 shows the 3D-SEM images, the cross-sectional profiles, and the 

depths/widths at different locations in different regions of the groove obtained in the 

CS test. It can be seen from Fig. 5.10(a) that in region bCS the groove was formed with 

single V-shaped cross-sectional profiles at all the four locations selected. Comparing 

the cross-sectional profiles of the V-shaped groove and the cone-shaped tool used (Fig. 

3) reveals that the work material suffered plastic deformation and/or ductile removal 

as mentioned in section 3.2.1. However, in region cCS as shown in Fig. 5.10(b), the 

groove was generated either by plastic deformation and/or ductile removal at 

locations 1–4 or by brittle fractures just after location 4, confirming that a ductile–

brittle transition occurred in this region. The groove depth of about 0.08 μm at 

location 4 can hence be determined as the critical depth of cut. As the tool depth of cut 

further increases, the groove cross-sectional profile (Fig. 5.10(c)) became more 

jagged rather than having a single V-shape (Fig. 5.10(b)) in region dCS due to the 

occurrence of macro-fractures and macro-cracks over the entire region. Shifting the 

attention to the depth/width of the groove, it can be found that these values tend to 

increase as the tool depth of cut increases along the scratching direction.  
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(a) Region bCS  

 

(b) Region cCS 

 

(c) Region dCS 

Fig. 5.10 3D-SEM images and cross sectional profiles of the groove formed in 

the CS test. 

 

For contrast, the 3D-SEM images, the cross-sectional profiles, and the 

depths/widths at different locations in different regions of the groove obtained in the 

UAS test are shown in Fig. 5.11. It is observed from Fig. 5.11(a) that, in region bUAS, 

all the local scratches that comprise the groove (Fig. 5.11(b) is also referred) have 

similar V-shaped cross-sectional profiles formed due to the plastic deformation and/or 

ductile removal of material. As the tool is moved in the scratching direction to reach 
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region cUAS, it can be seen from Fig. 5.11(b) that a macro brittle fracture started to 

occur soon just behind location 4 and a groove depth of about 0.125 μm at location 4 

can be determined to be the critical depth of cut for the ductile–brittle transition. It is 

noteworthy that the critical depth of cut increased by around 56.25% from 0.08 μm in 

the CS test to 0.125 μm in the UAS test.  

Further in region dUAS, macro-brittle fractures and macro-cracks were formed over 

the entire region due to the significantly increased tool depth of cut, and thus the 

groove cross-sectional profiles in this region became jagged (Fig. 5.11(c)). In addition, 

the lateral cracks and ridges are periodically formed over the entire region. Concretely, 

there are two lateral cracks in the lateral side of the groove and one ridge in the 

bottom of the groove in one UV period. Similar to the tendency in the CS process, it 

is also found from Figs. 5.11(a)–(c) that the groove depth/width increases as the tool 

is moved in the scratching direction for the UAS process.   
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                                  (a) Region bUAS 

(b) Region cUAS 

                                     

(c) Region dUAS  

 Fig. 5.11 3D-SEM images and cross sectional profiles of the groove formed 

in the UAS test. 
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(a) Groove depth 

 

                             (b) Groove width 

Fig. 5.12 Variations of the depth and width of the grooves  

 

The variations of the depth and width of the groove during UAS were compared 

with those during CS based on Figs. 5.12 (a) and (b), respectively. It is evident from 

the figures that either the depths or the widths tend to gradually increase during both 

the CS and the UAS due to the gradual increase in the nominal tool depth of cut (Fig. 

5.2). However, it is also observed that the fluctuations in the depth and width in the 

UAS process are greater compared to the CS process. This phenomenon is considered 

to be caused by the simultaneous tool UVs in the y (depth) and z (width) directions. In 

particular, it is interesting to note that although the mean value of the groove width in 

the UAS process is smaller than that in CS for the beginning groove region where the 
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intermittent scratching mode occurred (see the close-up within Fig. 5.12(b)), little 

difference between the mean values of groove widths in the CS and the UAS 

processes can be observed in the rest region of the groove where the continuous 

scratching mode occurred. Further, the difference between the mean values of the 

groove depths in CS and UAS continue to increase because the groove depth in CS 

remains shallow over the entire length of the groove, indicating that the cutting ability 

of the tool was significantly improved by the UV assistance. Thus, it is concluded that 

the UV in y-direction strongly contributes to the material removal in the UAS process. 

Although cracks are formed on the lateral side of the groove, the UV in z-direction 

only results in the variation of the cutting trace (i.e., approximately sinusoidal cutting 

trace) and hardly contributes to the material removal.   

In addition, the theoretical depth and width of the grooves calculated with Eqs. 

(3)-(6) are compared with experimental ones in UAS and CS as shown in Figs. 5.12 

(a) and (b), respectively. It is found that in CS the experimental depth is smaller than 

the theoretical value. This is ascribed to the influence of the deflection caused by the 

inadequate stiffness of the experimental setup. By contrast, although the experimental 

depth is smaller than theoretical depth in ductile region, the mean value of the 

experimental depth is close to the mean value of theoretical depth in brittle region in 

UAS. This means that the stiffness of the experimental setup is improved by the 

assistance of UV. Further, the fluctuation of experimental depth is found to be greater 

than the theoretical one. This is probably because of that in the calculation of the 

theoretical depth with Eq. (3) only the geometrical relationship between the tool and 

the workpiece was considered and the influence of the kinematic characteristics of the 

tool on the material removal was ignored. Comparing the theoretical and experimental 

values of width shows that the theoretical width is larger than experimental one in 

ductile region and is smaller than experimental one in brittle region both in UAS and 

CS processes. The insufficiency of stiffness of the experimental setup caused the 

experimental width to be smaller than the theoretical width in ductile region in UAS 

and CS processes, and the tool wear in scratching process caused the experimental 
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width to be larger than the theoretical width in brittle region in UAS and CS 

processes.  

From the variations of the velocities (Fig. 5.3), it is found that there are two 

variation phases in one UV period: one is velocity increment phase (from 17.5 to 35μs 

and from 52.5 to 69.9μs), the other is velocity decrement phase (from 0 to 17.5μs and 

from 35 to 52.5μs). In the increment phase, the tool moves from the vertex to the 

equilibrium position of the sinusoidal trajectory as the velocity increases from zero to 

maximum absolute value (11mm/s in the y-direction and 54mm/s in z-direction), 

leading to the kinetic energy of the tool reaching its maximum value. On the contrary, 

in the decrement phase, the velocity decreases from maximum absolute value to zero 

in y- and z-directions, and hence the tool impacts on the workpiece with high kinetic 

energy. Upon impact of the tool on the workpiece, the crack or the material removal 

occurs at the point of impact [9-11], resulting in the expansion of the ductile 

removal/brittle fracture zone in the UAS process. The expansion of the 

deformation/fracture area is the main factor that induces deeper grooves and forms the 

lateral cracks compared to CS, eventually leading to the more materials being 

removed, i.e., the cutting ability of the tool was improved in the UAS process 

compared to that in CS. The improvement of the stiffness in UAS may be ascribed to 

the cutting ability of the tool was improved in the UAS process compared to that in 

CS.  

In addition, as mentioned above, the impact occurs twice in one UV period in 

z-direction. However, owing to the tool moving upward, the impact effect of the tool 

will not act on the workpiece from 0 to 17.5μs in y-direction, thus the impact effect 

acting on the workpiece occurs only one time in one UV period in y-direction. 

Therefore, two lateral cracks in the lateral side of the groove and one ridge are formed 

in the bottom of the groove in one UV period as shown in Fig. 5.11(c). 

 



Chapter 5 Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool 

 
80 

 

5.4.3 Scratching forces  

Figs. 5.13(a) and (b) show the variations of the scratching forces during the CS and 

UAS processes (time t = 0 is the time when scratching starts), respectively. It can be 

seen from the figures that for both CS and UAS the mean scratching forces values 

both in the x- and y-directions tend to gradually increase in the first half from zero to a 

peak and then they decrease to reach zero again in the latter half, whereas the mean 

values of the forces in the z-direction remain at zero during the entire time. This is 

because the nominal tool depth of cut gradually increases in the first half and then 

decreases in the latter half as illustrated in Fig. 5.2. It is further noted that the three 

force components either in the CS process or in the UAS process fluctuate during 

scratching; however, the fluctuations in the UAS process are greater than those in the 

CS process. Comparing the scratching forces in UAS and CS shows that the mean 

values of the normal (in y-direction) and tangential (in z-direction) forces in UAS are 

smaller than those in CS.  

 

 

(a) In the whole CS process from LCS to 

RCS 

 

(b) In the whole UAS process from LUAS 

to RUAS 

Fig. 5.13 Scratching forces in the CS and the UAS processes. 

 

Additionally, the length, LUAS, of the diamond tool’s trajectory in the UAS process 

in the time period from an arbitrary time t1 to another arbitrary time t2 (t2 > t1) is given 

by the equation below with the help of Eq. (2). 
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As aforementioned, the CS process can be considered to be a special case of UAS 

where Ay = 0 and Az = 0. It is, thus, deduced from Eq. (7) that the length of the tool’s 

trajectory in UAS is longer than that in CS under the same conditions. Zhang et al.[5] 

reported that, in UAS with constant volumetric material removal, a longer tool 

trajectory length leads to a smaller tool depth of cut. It is also well known that the 

cutting forces increase as the depth of cut increases [12]. Thus, it is deduced that the 

scratching forces will be smaller in UAS compared to CS since the tool trajectory 

length in UAS is longer than CS when volumetric material removal volume is kept 

constant. This may result in the mean values of the normal and tangential forces in 

the UAS process being smaller than those in the CS process, as shown in Figs. 13(a) 

and (b).  

5.4.4 Ductile-brittle transition mechanism 

 

 

Fig. 5.14 Schematic of an abrasive grain removing material from a brittle workpiece 

via ductile-mode grinding 
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Fig. 5.15 Schematic of an abrasive grain removing material from a brittle workpiece 

via brittle-mode grinding 

 

Fig. 5.14 is a schematic of an abrasive grain-removing material in a ductile-mode 

from a brittle workpiece. If the grinding force is small enough, then the grain plows a 

groove via plastic deformation of the workpiece, leaving a ductile-ground groove and 

a subsurface region of plastically deformed material. This is the ductile 

material-removal mode [13].  

Just beneath the plastic deformation zone is a region of residual tensile elastic stress 

resulting from the plastic deformation. If the grinding force is increased, the groove 

depth, plastic deformation zone, and elastic tensile stresses are also increased. At 

some critical grinding force, a radical/median crack forms beneath the abrasive grain, 

propagating to a depth tc. If the force is increased above the threshold for median 

crack formation, the residual stresses left in the workpiece at the base of the plastic 

deformation zone will propagate cracks after the grinding grain has passed. These are 

called lateral cracks, and their formation and propagation to the workpiece surface 

leads to brittle material removal. A schematic of brittle-regime material removal is 

illustrated in Fig. 5.15 [13]. 
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5.4.4.1 Threshold energy for radial/median and lateral fracture 

In analysis, the workpiece hardness is assumed constant throughout the region of the 

grinding. With rise in the grinding force, the volume of the grinding zone as well as 

plastic zone will increase. At a certain grinding force, the tensile stresses at the 

boundary of the plastic zone will exceed the fracture limit of the workpiece material 

and subsequently cracks will initiate. Therefore, the crack initiation can be expressed 

based on the threshold volume of the indentation zone and denoted by δV [14]. 

Slikkerveer et al. [15] presented the removed volume related to the crack threshold for 

radial/median cracks: 
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Where E is Young’s modulus of the workpiece material, KIC is fracture toughness of 

the workpiece material, H is hardness of the workpiece material. 

And for lateral cracks: 
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The parameter μ in Eq. (8) is a dimensionless constant which correlates the size of the 

grinding zone with that of the plastic zone. Also, parameter β is a constant, 

independent of material properties and grinding grain shape. Furthermore, the 

parameter ζ0 in Eq. (9) is an empirical constant obtained from experiments with 

Vickers indenters. Finally, α and A are the shape factor of the grinding grain and shape 

factor of the workpiece material chip above the lateral crack respectively.  

The energy U absorbed by workpiece material with the work done by the grinding 

grain through the cutting event, can be written as the following equation [15]: 

VHU                                                          (10) 

Therefore, the required threshold energy Ur to initiate the radial/median cracks: 
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Similarly, the threshold energy Ul for initiation of the lateral cracks is presented as: 
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5.4.4.2. Consumed energy in the ductile-mode and brittle-mode 

grinding 

According to the energy conservation law, the energy absorbed by workpiece material 

is equal to the energy consumed in ductile-mode grinding done by the grinding grain 

through the cutting event; 

The energy consumed in ductile-mode grinding is the product of tangential cutting 

force and cutting velocity, it can be written as [16]: 

vfU nd                                                            (13) 

Where Ud is the energy consumed in ductile-mode machining, fn is the normal force 

of a single abrasive grain in the cutting process in UAIG, v is the cutting velocity. 

In brittle-mode machining, material is removed by crack propagation. From the 

indentation test results of brittle materials, it has been established that there are two 

major types of crack systems i.e. radial/median and lateral [13].  

  smlb vCCU 22                                                   (14) 

Where Ub is the energy consumed in brittle-mode machining, Cl is the length of lateral 

crack, Cm is the length of radial/median crack, γs is the surface energy of the material 

(usually a constant).  

The length of the radial/median Cm is determined by the critical load of fracture and 

fracture toughness of the material [17]: 
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Where χ is the geometric constant and its value is 0.064 for most of brittle materials, 

Pc is the load at the critical point aligned in the direction of radial/median crack, here 

Pc=fn.  
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It was identified in abrasive machining that the surface damage could approximately 

be correlated to the subsurface damage [13]: 
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C
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In brittle-mode grinding, it is important to note that plastically deformed zone still 

exists though material is removed by the crack propagation as shown in Fig. 2. 

Therefore, the total consumed energy in brittle-mode grinding is given by: 
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5.4.4.3 Critical depth of cut 

Threshold energy for radial/median and lateral cracks could be applied as an 

indication of the transition points between plastic deformation, radial crack initiation 

and lateral fracture in processes dealing with machining hard and brittle materials [15]. 

If the total energy consumed in the brittle-mode grinding which is transferred into the 

workpiece material done by the grinding grain through the cutting event, exceeds its 

threshold energy for crack initiation, material removal takes place in brittle mode i.e. 

by lateral fracture [14]; otherwise, material is removed in a ductile mode. Based on 

this rationale, one can consider that:  

If <l totalU U
                                                      

(18) 

Lateral crack and material is removal by crack propagation in a brittle mode. 

If 
totall UU                                                       (19)  

Ductile mode of energy transits into the brittle mode, the transition point is considered 

as the critical depth of cut. 

From Eq. (12), it is known that the threshold energy Ul for initiation of the lateral 

cracks. i.e., the threshold energy for brittle mode is a constant value. It is known from 

section 5.4.3 that grinding force in UAIG is smaller than that in CIG, thus, it is 

deduced from Eq. (17) that the total energy consumed in the brittle-mode grinding 

Utotal  in UAIG is smaller than that in CIG. Furthermore, it is also known from 
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chapter 4 that the deeper of the depth of cut is, the bigger a single abrasive grain 

normal force fn becomes. Therefore, it is deduced that grinding force in UAS is 

smaller than that in CS, leading to the deeper depth of cut in UAS being necessary to 

generate brittle-mode grinding compared to that in CS. This may be the reason the 

critical depth of cut in the UAS test was larger than that in the CS test.  

 

5.4.5 Cutting efficiency and nature of material removal 

 

 

 

(a)  CS            (b) UAS 

Fig. 5.16 Variation of the fn/S in ductile-brittle transition region cCS and cUAS during 

the CS and UAS processes.   

 

To investigate the cutting efficiency of the UAS process, fn/S, where S is the groove 

cross sectional area (i.e., the contact area between the tool and the workpiece in the 

actual cutting action), in the ductile-brittle transition region, cCS and cUAS, are studied. 

As shown in Fig. 5.16, before the ductile-brittle transition occurs, fn/S shows a slow 

decreasing trend both in CS and UAS, whilst fn/S fluctuates approximately in 

sinusoidal pattern in UAS. When the ductile-brittle transition occurs, fn/S rapidly 

decreases both in CS and UAS. In addition, fn/S fluctuates with a wider range in UAS 

than does in CS, and also the mean value of fn/S in UAS is smaller than that in CS. 

The smaller the fn/S is, the smaller the force for removing unit volume of material, 

indicating that the cutting efficiency has been improved. As a result of the impact of 
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tool on the workpiece in y- direction, more material is removed in UAS compared to 

that in CS. This eventually lead to the higher cutting efficiency in UAS compared to 

CS. In addition, fn/S is smaller in brittle region than that in ductile region, meaning 

that the cutting efficiency is higher in brittle region than that in ductile region.   

 

 

 

            (a)  CS            (b) UAS 

Fig. 5.17 Variation of the groove cross sectional area and the force ratio fn/ft during CS 

and UAS processes.  

 

To understand the nature of the material removal mechanism in UAS, the variation 

of the groove cross sectional area S and the ratio of the normal force fn to the 

tangential force ft, fn/ft, during the CS and UAS processes in the ductile-brittle 

transition regions, cCS and cUAS, are investigated. As shown in Figs. 5.17, before the 

ductile-brittle transition occurs, groove cross sectional area S increases slowly, whilst 

the force ration fn/ft decreases slowly both in the CS and UAS. Further, S and fn/ft are 

found to fluctuate approximately in sinusoidal pattern in the UAS. When the 

ductile-brittle transition occurs, the force ratio fn/ft suddenly decreases with a rapid 

increase in the groove cross sectional area S both in UAS and CS. In addition, 

comparing S and fn/ft in CS with those in UAS, the results show that although the 

fluctuations of S and fn/ft in UAS are heavier than that in CS, the mean value of S in 

UAS is bigger than that in CS while the mean value of fn/ft in UAS is smaller than that 

in CS. In grinding processes, the force ratio fn/ft mainly depends on the grindablity of 

workpiece material [18]. The larger the force ratio fn/ft becomes, the lower the 

grindablity of workpiece material are [19]. Due to the impact of tool on the workpiece 
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in y- direction, the mean value of S in UAS is bigger than that in CS as shown in Fig. 

5.17. This leads to more materials being removed in UAS compared to CS. The force 

ratio fn/ft is smaller in UAS than that in CS as shown in Fig. 5.17, which leads to the 

cutting ability in UAS being improved. Moreover, the force ratio fn/ft in brittle region 

is smaller than that in ductile region both in UAS and CS as shown in Fig. 5.17, 

which leads to the cutting ability being improved in brittle region.  

On the basis of above discussions, it is concluded that due to the impact of tool on 

the workpiece in y- direction, not only the more material is removed, but also the 

cutting efficiency and cutting ability are improved. The impact and cutting action at 

the tool tip on the machining surface are the main factors contributing to the material 

removal. 

 

5.5. Simulation details 

To fully explore the material removal behavior in the UAS process, a quantitative 

analysis on the material deformation/fracture process, the stress distribution features, 

and the mechanical property changes in the UAS process are required. These cannot 

be observed by experimental method. In the current work, a simulated 

ultrasonic-assisted scratch (UAS) model with a single abrasive grain performed on 

SiC ceramics was used to investigate the material removal mechanism in the UAG of 

SiC ceramics.   

In simulation, the workpiece is modeled by smooth particle hydrodynamic (SPH) 

particles. The SPH method, as a truly meshfree, free Lagrangian, particle method, first 

introduced by Lucy [20], Gingold and Monaghan [21]. The main advantage of the 

SPH method is to bypass the requirement for a numerical grid to calculate spatial 

derivatives. Material properties and state variables are approximated at a discrete set 

of disordered points, called SPH particles. This avoids severe problems associated 

with mesh tangling and distortion which usually occur in Lagrangian analyses 

involving large deformation and/or strain rates and extreme loading events [22]. The 
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material removal process, energy and stresses distributions, and force change process 

were well demonstrated by SPH method. Therefore, it is suitable to simulate a cutting 

process using SPH method to investigate the material removal mechanism of UAS of 

SiC ceramics. 

 

5.5.1 Simulation Model Development 

The simulation model was developed and established in Ansys/Ls-dyna. Before the 

model was developed, the following assumptions were made:  

(1) In reality, an individual grain has many tiny cutting points on the surface. However, 

for simplicity, the grain tips were approximated as hemisphere (Fig. 5.16). 

(2) The influence of temperature was ignored in the cutting process. 

(3)The scratch time used in this simulation was 105μs. Correspondingly, the depth of 

cut ae was unchanged in this short time in the UAS process.  

The main physical and mechanical properties of the materials are detailed in Table 

5.1. Fig. 5.18 shows the geometry of the grain and the workpiece. The right side of 

the figure is an enlarged view of the rake face of the grain. The vertical angle of 80° 

and nose radius of the grain are 80° and 15μm, respectively. The workpiece is 

90μm×80μm×30μm. The contact type between the grain and the SPH workpiece was 

defined using the automatic node-to-surface contact in Ansys/Ls-dyna. The bottom of 

the workpiece was fully constrained in the scratch process.   

The UV with amplitudes of Ay=0.25 and Az=0.25, and frequency of f=14.3kHz, and 

feed speed at a speed of Vs=0.5m/s along the x-direction are added on the diamond 

tool. Depth of cuts ae are set to be 0.07μm and 2μm in simulations, respectively.   
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Fig. 5.18 Schematic geometry of the simulation model and tip of the grain  

 

Table 5.1 Material constants of silicon carbide ceramics [23, 24] and diamond [25] 

Materials properties Symbol Silicon carbide Diamond 

Density ρ (kg/m
3
) 3163 3510 

Shear modulus G (GPa) 183 1200 

Poisson's ratio ν  0.1 

Tensile strength T* (GPa) 0.37  

Hugoniot elastic limit (HEL) HEL (GPa) 14.567  

HEL pressure  pHEL (GPa) 5.90  

HEL strength THEL (GPa) 13.0  

 

5.6 Simulation results and discussion 

5.6.1 Cutting force 

Figs. 5.19 shows the cutting forces in the scratching process obtained by 

simulation in the CS and UAS at ae=0.07μm. In CS process, the forces in x- and 

y-directions increase from zero until reaching the maximum when the grain cuts into 

the workpiece completely at 35μs, then the forces stabilize to a certain level until the 

cutting process was finished, whilst the force in z-direction almost maintains zero in 

the cutting process (Fig. 5.19(a)). As for the UAS, the cutting forces in x-, y- and 
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z-directions increase and then decrease severely in a sinusoidal pattern the cutting 

process (Fig. 5.19(b)). Meanwhile, the force curves are un-continuous.  

Shifting the attention to CS at ae=2μm, similar to that in ae=0.07μm, the force in 

y-direction increases firstly and then stabilizes to a certain level, whilst the force in 

z-direction also almost maintains zero in the cutting process; however, the force in 

x-direction increases firstly then gradually decreases to stabilized level, which is 

different from that in ae=0.07μm (Fig. 5.20(a)). Turing to UAS, the forces also 

increase and then decrease alternatively whilst the force curves found to be 

continuous. Further, it is figured out that there are little fluctuations at the ae=0.07μm 

(Figs. 5.19(a) and 5.19(b)), while there are obvious abrupt fluctuations at the 

ae=2.0μm both in CS and UAS (Figs. 5.20(a) and 5.20(b)). According to the study on 

scratching of sapphire by Zhang, et al. [15], the scratching forces vary with little 

fluctuation when the material is removed in ductile mode while fluctuate abruptly 

when the material is removed in brittle fracture mode. It is hence inferred that the 

materials were removed in a ductile cutting mode at ae=0.07μm while the materials 

were removed in a brittle cutting mode at ae=2μm.   

 

  

(a) Cutting force in CS (b) Cutting force in UAS 

Fig. 5.19 Cutting force in the scratching process in the CS and UAS at ae=0.07μm.  
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(a) Cutting force in CS (b) Cutting force in UAS 

      Fig. 5.20 Cutting force in the scratching process in the CS and UAS at 

ae=2μm.  

 

5.6.2 Material removal process  

Figs. 5.21 describes the chip topographies and material deformations in the CS 

and UAS at the ae=0.07μm and ae=2μm viewed from top. In the case of ae=0.07μm, it 

is found that the material was not removed both in CS and UAS, meaning that only 

plastic deformation occurred. Meanwhile, the scratching in the CS is continuous while 

in the UAS is intermittent (Fig. 5.21 (a) and 5.21 (b)). These results are consistent 

with those obtained in the experiments (Figs. 5.8 and 5.9). Turing to ae=2μm, the 

deformation fields in the two lateral sides of the groove appear straight in the CS test 

and serrated in the UAS test (Fig. 5.21 (c) and 5.21 (d)). These findings also agree 

with the experimental results. Accordingly, the validity of the simulation model is 

confirmed.  
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(a) ae=0.07μm, CS (b)ae=0.07μm,UAS (c) ae=2μm, CS (d) ae=2μm, UAS 

Fig. 5.21 Material deformation behavior at ae=0.07μm and ae=2μm when time=105μs. 

 

    

(a) 17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e) 17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

Fig. 5.22 State of workpiece deformation at different times during the scratching 

process in the UAS and CS tests at ae=0.07μm. 

 

    

(a) 17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e) 17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

Fig. 5.23 State of workpiece deformation at different times during the scratching 

process in the UAS and CS tests at ae=2μm. 
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To thoroughly understand the material deformation process in the UAS, the workpiece 

is sliced along the cutting direction of the grain and then compared with that in the CS. 

The material deformations at time 1/4T = 17.5μs (the period of UV T = 69.9μs), 2/4T 

= 35.0μs, 3/4 T = 52.4μs, and T = 69.9μs in the UAS, compared with those in the CS, 

are investigated. Figs. 5.22 and 5.23 show the state of workpiece deformation at 

different times during the scratching process in the UAS and CS at ae=0.07μm and 

ae=2μm, respectively. With the advancement of the grain, a number of features can be 

distinguished in the scratching procedure. 

In the case of ae=0.07μm, given the large negative rake angle, the resultant force 

points to the front surface of and under the grain [26]. As a result, deformation of the 

workpiece appears on the front surface of and under the grain not only under high 

compressive stress but also under the action of shear stress (Figs. 5.22(a)-5.22(d)) [7]. 

But the material is not removed and there is only elastic-plastic deformation can be 

observed in the CS process, suggesting that the material removal behavior at this 

depth of cut is deformation and/or ductile removal due to the insufficient compressive 

stress and shear stress to remove the material. Similar to that in CS, the elastic-plastic 

deformation also can be observed on the front surface of and under the abrasive grain 

in UAS (Fig. 5.22(e)-5.22(h)). Meanwhile, it is found that the deformation area is 

un-continuous. This is because that, as the ultrasonic vibrates in y-direction and its 

amplitude is larger than the ae, the grain moves upward in the +y-direction over the 

period of 0μs to 17.5μs and reaches its highest position in the y-direction, resulting in 

the grain lifts off completely at 17.5μs (Fig. 5.22(e)); while over the period of 17.5μs 

to 52.4μs, the grain moves downward in the -y-direction and reaches the deepest 

depth at 52.4μs, resulting in the grain penetrates into the workpiece (Figs. 5.22(f) and 

5.22(g)); Over the period of 52.4μs to 69.9μs, the grain moves upward in the 

+y-direction and reaches the position same as that in the CS test at 69.9μs (Fig. 

5.22(h)). Thus, it is concluded that, due to the UV of the grain in y-direction, the grain 

depth of cut periodically changes in UAS, eventually leading to the formation of the 

un-continuous deformation area. The reason why the forces change in an 
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un-continuous pattern, as previously shown in Fig. 4(b), is ascribed to this.  

Turning to ae=2μm, under the co-action of compressive stress and shear stress, 

material deformation and dislocation occur, and the material is removed as chips from 

the front surface of the grain and underneath the grain at 17.5μs in CS (Fig. 5.23(a)). 

At 35μs, more chips form on the front surface of the grain in the CS compared with 

those forming at 17.5 μs (see Fig. 5.23(b)). This result can be attributed to the increase 

in both compressive stress and shear stress. Furthermore, the material deformation 

area on the front surface of the grain (as indicated by the ellipse in Fig. 5.23(b)) at 35 

μs is smaller than that at 17.5 μs (as indicated by the ellipse in Fig. 5.23(a)). This 

result is brought about by the depth of cut starting from 2μm and not from 0μm at 0μs 

in this simulation, leading to the impact of the grain on the workpiece at the beginning 

of the cutting action. The force in x-direction is bigger at 17.5μs than any others time 

as shown in Fig. 5.23(a) may be attributed to the influence of the impact. At 52.4 (Fig. 

5.23(c)) and 69.9μs (Fig. 5.23(d)), material deformations in the CS are almost the 

same as that at 35μs.  

In the UAS, no chip can be observed on the front surface of the grain at 17.5μs 

(Fig. 5.23(e)), mainly because the grain reaches its highest position in the y-direction 

at 17.5μs as mentioned above, resulting in the lowest depth of cut, which causes low 

compressive stress and shear stress [7]. As a result, the material removed in an elastic 

plastic mode at 17.5μs. With the continuous advancement of the grain, the grain cuts 

into the workpiece completely at 35μs. Although the depth of cut in the UAS is the 

same as that in the CS test, little chips appear on the front surface of the grain in the 

UAS likely because the compressive stress and shear stress are just beginning to reach 

the chip formation threshold (Fig. 5.23(f)). At 52.4μs, material deformation in the 

UAS (Fig. 5.23(g)) is quite different from that at 35μs (Fig. 5.23 (f)) and 17.5μs (Fig. 

5.23(d)) as well as from that in the CS (Fig. 5.22 (c)). Brittle fracture can be observed 

on the front surface of and under the grain (as indicated by the ellipse in Fig. 5.23(g)). 

These phenomena are absent in the CS perhaps because of the impact arising from the 

UV against the workpiece in the y- and z-directions, i.e., the oblique impact of the 

grain against the workpiece in the y- and z-directions. Under the co-action of the 
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impact and the cutting at the grain tip on the machined surface, the material is 

removed, which can be considered as the main material removal mechanism in the 

UAS. At 69.9 μs, the material deformation area on the front surface of the grain in the 

UAS (as marked in Fig. 5.23(h)) is bigger than that in the CS test. This result is 

attributable to the influence of the impact of the grain on the workpiece at 35μs to 

52.4μs.  

5.6.3 Scratching-induced stress  

    

(a) 17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e)17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

Fig. 5.24 Effective stress distribution on the cross surface at ae=0.07μm. 

    

(a)17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e)17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

Fig. 5.25 Effective stress distribution on the cross surface at ae=2μm. 
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(a) 17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e) 17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

        Fig. 5.26 Effective stress distribution on the top surface at ae=0.07μm. 

 

    

(a) 17.5μs, CS (b) 35μs, CS (c) 52.4μs, CS (d) 69.9μs, CS 

    

(e) 17.5μs, UAS (f) 35μs, UAS (g) 52.4μs, UAS (h) 69.9μs, UAS 

Fig. 5.27 Effective stress distribution on the top surface at ae=2μm. 

 

Knowledge of stress states during the cutting process is key to understanding 

material removal mechanism [27]. The effective stress field on the cross surface along 

the cutting direction and that on the top surface during the UAS and CS processes 

were investigated.   

When the grain is cutting into the workpiece, considerable stress is generated in 

the area around the grain and in the subsurface underneath the grain [7]. In the CS 

process, the stress fields are basically stabilized after the grain cuts entirely into the 

workpiece both in the cross surface and the top surface (Figs. 5.24-5.25) both at 
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ae=0.07μm and ae=2μm. These results indicate that the deformation fields are 

basically stabilized in the CS process after tool cuts entirely into the workpiece. 

However, the stress fields are wider at 17.5μs and 35μs in the cross surface (see Figs. 

5.25(a) and 5.25(b)) and in the top surface (see Figs. 5.25(a) and 5.25(b)) compared 

with that at other times because of the impact of the grain on the workpiece.  

Turing to the UAS process, it is observed that the stress fields are un-continuous at 

ae=0.07μm (Figs. 5.24 and 5.26), owing to the ultrasonic vibrates in y-direction and 

its amplitude is larger than the ae. Further, it is also observed that the stress fields on 

both surfaces suddenly expand further at 52.4μs (Figs. 5.24(g) and 5.26(g)) and also 

become wider at 69.9μs than those in the CS process (compare Figs. 5.26(c) and 

5.26(g), and Figs. 5.27(c) and 5.27(g)). These are attributed to the impact arising from 

the UV against the workpiece in the y- and z-directions. Shifting the attention to 

ae=2μm, the stress fields in the cross and top surfaces at 17.5 (Fig. 5.25(e)) and 35μs 

(Fig. 5.25(f)) are smaller compared with those in the CS process because of the depth 

of cut is lower than that in CS as mentioned in section 4.2. However, the stress fields 

on both surfaces suddenly expand further at 52.4μs ((Fig. 5.25(g))) compared with 

those at 17.5 and 35μs, which are also because of the impact arising from the UV 

against the workpiece in the y- and z-directions. As the cutting tool continues to move 

forward, the stress fields on both surfaces at 69.9μs become wider than those at 

52.4μs and those in the CS process and at 69.9μs. Therefore, the deformation field is 

deeper and wider on both the cross and top surfaces.  

5.7 Summary 

To comprehend the material removal mechanism in the ultrasonic-assisted grinding 

of SiC ceramics, an ultrasonic-assisted scratching (UAS) test involving SiC ceramics 

specimen was performed on an in-house-produced experimental setup. The material 

removal characteristics in the UAS test were compared to the conventional scratching 

(CS) test without ultrasonic vibration. The results and conclusion can be summarized 

as follows: 
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(1) Both in CS and UAS processes, three types of material deformation/fracture are 

successively generated along the scratching trace: the ductile removal mode, 

ductile–brittle transition mode, and brittle removal mode; the scratching groove 

formed appears straight in the CS process while it is sinusoidal in the UAS 

process.  

(2) Depending on the actual depth of cut, there are two scratching modes in the UAS 

process: one is an intermittent mode and the other is a continuous mode. The UV 

in y-direction strongly contributes to the material removal, whereas the UV in 

z-direction only results in variation of the cutting trace and hardly contributes to 

the material removal in the UAS process. 

(3) Comparing the theoretical depths with experimental ones shows that experimental 

depth is smaller than the theoretical one in CS, whereas the mean value of the 

experimental depth is close to the mean value of the theoretical one in UAS. This 

means that the stiffness of experiment setup is improved by UV assistance.  

(4) The mean groove depth in the UAS process is much bigger than the CS process 

over the entire length of the groove, indicating that the cutting ability of the tool 

was significantly improved by the assistance of the UV. Furthermore, the critical 

depth of cut is increased from 0.08 μm in CS to 0.125 μm in UAS, which is an 

increase of 56.25%. This is likely because the fracture toughness in the UAS 

process is higher than that in the CS process. 

(5) Due to the abrupt variation of the scratching forces, the forces heavily vary but the 

periods are different from that of the UV of the tool when the material removal is 

in brittle mode.   

(6) The mean values of the fn/S and the force ratio fn/ft in UAS are smaller than those 

in CS, owing to the improved cutting efficiency and ability in UAS.  

(7) Investigations of the stress distribution on the cross and top surfaces along the 

cutting direction show that the stress fields on both surfaces become wider in the 

UAS process than in the CS process because of the impact arising from the UV. 

(8) The deformation of the SiC ceramics in the UAS process is equivalent to the 

combined effect of dynamic cutting with a tangential scratching velocity and UV. 
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The UV impacted the diamond tool, leading to the impact of the tool on the 

workpiece. Upon impact of the tool on the workpiece, the stress field spreads from 

the impact site, leading to the expansion of stresses. Such expansion is the main 

factor that induces deep scratching depths and increases the sizes of the radial and 

lateral cracks.  

Reference  

[1] Anderson, D. ; Warkentin, A. ; Bauer, R. Experimental and numerical 

investigations of single abrasive-grain cutting. Int. J. Mach. Tools Manuf. 2011, 51 

(12), 898-910. 

[2] Zhang, C. ; Feng, P. ; Zhang, J. Ultrasonic vibration-assisted scratch-induced 

characteristics o f C-plane sapphire with a spherical indenter. Int. J. Mach. Tools 

Manuf. 2013, 64, 38-48. 

[3] Gua, W. ; Yao, Z. ; Liang, X. Material removal of optical glass BK7 during single 

and double scratch tests. Wear 2011, 270 (3-4), 241-246. 

[4] Huang, L. ; Bonifacio, C. ; Song, D. ; Benthem, K. V. ; Mukherjee, A. K. ; 

Schoenung, J. M. Investigation into the microstructure evolution caused by 

nanoscratch-induced room temperature deformation in M-plane sapphire. Acta Mater. 

2011, 59 (13), 5181-5193. 

[5] Klecka, M. ; Subhash, G. Grain size dependence of scratch-induced damage in 

alumina ceramics. Wear 2008, 265 (5-6), 612-619. 

[6] Liang, Z. ; Wang, X. ; Wu, Y. ; Xie, L. ; Jiao, L. ; Zhao, W. Experimental study on 

brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of 

monocrystal sapphire using single diamond abrasive grain. International Journal of 

Machine Tools and Manufacture 2013, 71 (0), 41-51. 

[7] Chuang, T.-j. ; Jahanmir, S. ; Tang, H. C. Finite element simulation of straight 

plunge grinding for advanced ceramics. J. Eur. Ceram. Soc. 2003, 23 (10), 1723-1733. 

[8] Ghosh, D. ; Subhash, G. ; Radhakrishnan, R. ; Sudarshan, T. S. Scratch-induced 

microplasticity and microcracking in zirconium diboride–silicon carbide composite 



Ultra-fine internal grinding of SiC ceramics with the assistance of ultrasonic vibration 

 

101 

Acta Mater. 2008, 56 (13), 3011-3022. 

[9] Z Fawaz, W. Z., K Behdinan Numerical simulation of normal and oblique ballistic 

impact on ceramic composite armours Compos. Struct, 2004, 63 (3-4), 387-395. 

[10] Lee, M. ; Kim, E. Y. ; Yoo, Y. H. Simulation of high speed impact into ceramic 

composite systems using cohesive-law fracture model. Int. J. Impact Eng. 2008, 35 

(12), 1636-1641. 

[11] Kanel, G. I. ; Zaretsky, E. B. ; Rajendran, A. M. ; Razorenov, S. V. ; Savinykh, A. 

S. ; Paris, V. Search for conditions of compressive fracture of hard brittle ceramics at 

impact loading. Int. J. Plast. 2009, 25 (4), 649-670. 

[12] Shimada, K. ; Takeishi, T. ; Nobuhito, Y. ; Jiwang, Y. ; Tsunemoto, K. 

Ultrasonic-assisted micro-grinding with electroplated diamond wheels 2nd report: 

Effect of ultrasonic vibration on workpiece removal in grinding wheel end. Jpn. Soc. 

Abras. Technol. 2010, 54 (1), 37-40. 

[13] Bifano, T. G. ; Fawcett, S. C. Specific grinding energy as an in-process control 

variable for ductile-regime grinding. Precision Engineering 1991, 13 (4), 256-262. 

[14] Zarepour, H. ; Yeo, S. H. Predictive modeling of material removal modes in 

micro ultrasonic machining. International Journal of Machine Tools and Manufacture 

2012, 62, 13-23. 

[15] Slikkerveer, P. J. ; Bouten, P. C. P. ; Veld, F. H. i. t. ; Scholten, H. Erosion and 

damage by sharp particles. Wear 1998, 217 (2), 237-250. 

[16] Arif, M. ; Xinquan, Z. ; Rahman, M. ; Kumar, S. A predictive model of the 

critical undeformed chip thickness for ductile-brittle transition in nano-machining of 

brittle materials. International Journal of Machine Tools and Manufacture 2013, 64, 

114-122. 

[17] Arif, M. ; Rahman1, M. ; San, W. Y. Analytical model to determine the critical 

feed per edge for ductile-brittle transition in milling process of brittle materials. 

International Journal of Machine Tools and Manufacture 2011, 51 (3), 170-181. 

[18] Marinescu, I. D. ; Hitchiner, M. ; Uhlmann, E. ; Rowe, W. B. ; Inasaki, I., 

Handbook of machining with grinding wheels, CRC Press, 2006. 

[19] Liang, Z. ; Wang, X. ; Wu, Y. ; Xie, L. ; Liu, Z. ; Zhao, W. An investigation on 



Chapter 5 Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool 

 
102 

 

wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted 

Grinding (EUAG) of monocrystal sapphire. J. Mater. Process. Technol. 2012, 212 (4), 

868-876. 

[20] Lucy, L. B. A numerical approach to the testing of the fission hypothesis. The 

Astronomical Journal 1977, 82, 1013-1024. 

[21] Gingold, R. A. ; Monaghan, J. J. Smoothed particle hydrodynamics -Theory and 

application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 

1977, 181 (375-389). 

[22] Limido, J. ; Espinosa, C. ; Salaün, M. ; Lacome, J.-L. SPH method applied to 

high speed cutting modelling. International journal of mechanical sciences 2007, 49 

(7), 898-908. 

[23] Cronin, D. S. ; Bui, K. ; Kaufmann, C. ; McIntosh, G. ; Berstad, T., 

Implementation and validation of the Johnson-Holmquist ceramic material model in 

LS-DYNA, in:  4th European LS-dyna users conference, 2003, pp. 47-60. 

[24] Wang, Y. F. ; Yang, Z. G. Finite element model of erosive wear on ductile and 

brittle materials. Wear 2008, 265 (5-6), 871-878. 

[25] Anderson, D. ; Warkentin, A. ; Bauer, R. Experimental and numerical 

investigations of single abrasive-grain cutting. International Journal of Machine Tools 

and Manufacture 2011, 51 (12), 898-910. 

[26] Lin, B. ; Yu, S. Y. ; Wang, S. X. An experimental study on molecular dynamics 

simulation in nanometer grinding. J. Mater. Process. Technol. 2003, 138 (1-3), 

484-488. 

[27] Zhang, C. ; Feng, P. ; Zhang, J. Ultrasonic vibration-assisted scratch-induced 

characteristics of C-plane sapphire with a spherical indenter. International Journal of 

Machine Tools and Manufacture 2013, 64, 38-48. 

 

 

 

 



Ultra-fine internal grinding of SiC ceramics with the assistance of ultrasonic vibration 

 

103 

Chapter 6 Approaches to high accuracy internal 

grinding of SiC ceramics 

 

In chapter 3-5, fundamental Machining Characteristics of UAIG of SiC Ceramics, 

grinding force reduction mechanism and material removal mechanism were observed. 

In this chapter, in order to highly efficient and ultra-fine internal grinding of SiC 

ceramics, the probability of internal grinding of SiC ceramics in ductile mode is 

observed. In addition, grinding experiments are operated to extend UAIG method to 

industrial application.  

 

6.1 Internal grinding of SiC ceramics in ductile mode 

In order to observe the ductile-brittle transition in internal grinding of SiC ceramics, 

4 rounds of grinding tests were performed under different sets of experiment 

conditions as shown in Table 6.1. 

  

 Table 6.1 Experiment conditions for observation of ductile-brittle transition in 

internal grinding 

NO. Wheel NO. Workpiece 

rotational 

speed nw 

(rpm) 

Wheel 

rotational 

speed ng 

(rpm) 

Stock 

removal 

(μm) 

Feed rate 

Vc(μm/min) 

Ultrasonic  

Amplitude 

(μm) 

1 SD400P100M  300  4000  50   10 0/4 

2 SD1000P100M  300  3000  50   10 0/4 

3 SD1000P100M  300  4000  50   10 0/4 

4 SD3000P100M  300  4000  50   10 0/4 
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In grinding, the maximum cutting depth of a single grain gm is determined by [1]:  

 

eg

w
m

DV

V
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
 2                                                      (1) 

Where a is successive cutting edge spacing, Vw is workpiece tangential speed, Vg is 

grinding wheel tangential speed, Δ is grinding wheel depth of cut, and De is equivalent 

wheel diameter. In internal grinding, De can be written by [1]： 
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Where Dg is grinding wheel diameter and Dw is workpiece diameter. 

successive cutting edge spacing a is determined by [2]： 

3
41 2

9137
g
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

..                                      (3) 

Where M is is the grit number，ηg is the density of the wheel, (%). 

Table 6.2 shows the gm obtained from Eq. (1)-(3) under the condition as shown in 

table 6.1. 

 

                    Table 6.2 gm in different experiment conditions 

  No.1     No.2     No.3     No.4 

gm (μm) 0.251μm 0.093μm   0.072μm   0.019μm 

           

  

(a) work-surface integrity by CIG at 

gm=0.251μm 

   (b) work-surface integrity by UAIG at 

gm =0.251μm 
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(c) work-surface integrity by CIG at 

gm=0.093μm 

   (d) work-surface integrity by UAIG at 

gm=0.093μm 

  

(e) work-surface integrity by CIG at 

gm=0.072μm 

   (f) work-surface integrity by UAIG at 

gm=0.072μm 

  

(g) work-surface integrity by CIG at 

gm=0.019μm 

   (h) work-surface integrity by UAIG at 

gm=0.019μm 

   Fig. 6.1 SEM images of work-surface by CIG and UAIG at different experiment 

conditions 

 

Fig. 6.1 shows SEM images of workpiece surface by CIG and UAIG at different 

experiment conditions. It is found from Fig. 6.1(a) and 6.1(b) that brittle fractures and 

cracks can be clearly observed in the work-surface both in CIG and UAIG, suggesting 
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that the brittle fracture mode was the main material removal behavior when 

gm=0.251μm due to the cooperative action of the high compressive stress and shear 

stress [3]. When gm=0.093μm, obvious macro-brittle fractures and cracks were also 

generated in work-surface formed by CIG (Fig. 6.1(c)). Different to that in CIG, it is 

found that smooth surface besides macro-brittle fractures and cracks are formed in the 

work-surface formed by UAIG, indicating that indicating that a ductile–brittle 

transition occurred when gm=0.093μm (Fig. 6.1(d)). However, as observed in Fig. 

6.1(e), smooth surface besides macro-brittle fractures and cracks are formed in the 

work-surface formed by CIG when gm=0.072μm. By contrast, although some cracks 

can be observed in the work-surface, almost of the work-surface was smooth in UAIG 

when gm=0.072μm (Fig. 6.1(f)), indicating that the grinding mode was predominantly 

ductile. Shifting attention to Fig. 6.1(g) and 6.1(h), it is found that almost of the 

work-surface was smooth both in CIG and UAIG, suggesting that the ductile mode 

was the main material removal behavior when gm=0.019μm. 

 

       

         Fig. 6.2 Illustration of ductile-brittle transition in CIG and UAIG 

 

Thus, it is concluded that ductile-brittle transition occurs at gm=0.072μm in 

CIG while at gm=0.093μm in UAIG. This means that critical depth of cut 

(ductile-brittle transition depth) is increased in UAIG compared with that in 
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CIG, meaning that ductile mode grinding is easily achieved in UAIG (Fig. 

6.2). This findings almost agree with those in scratching tests as shown in 

chapter 5.  

 

6.2. Grinding efficiency 

Understanding physical processes in grinding operation is necessary for the 

optimal use of UAIG technology. Generally, material removal efficiency is the result 

of the physical processes in grinding, thus, material removal volume in internal 

grinding with assistance of UV and without assistance of UV were observed to 

evaluate the grinding efficiency.  

Fig. 6.5 shows experiment method for evaluating the material removal efficiency. 

In the grinding process, oscillation stroke is not cover the whole internal surface, thus, 

radial depth will be formed after grinding. We can know the grinding efficiency by 

measuring the radial depth.  

 

 

       Fig. 6.5 Experiment method for evaluating the material removal efficiency 

 

In order to observe the material removal efficiency in ductile grinding mode and in 

brittle grinding mode, grinding tests were performed under experiment conditions 

No.1, No.4 and stock removal=50μm as shown in Table 6.1.  
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          Fig. 6.6 Material removal efficiency in ductile and brittle grinding mode 

 

It is found from Fig. 6.6 that radial removal depth is 12.5μm in UAIG while 11.4μm 

in CIG at gm=0.019μm, i.e., a 9.6% increase in ductile grinding mode, whereas radial 

removal depth is 22μm in UAIG while 18μm in CIG at gm=0.251μm, i.e., a 22.2% 

increase in brittle grinding mode. Therefore, it is concluded that the effect of UV on 

material removal efficiency will be enhanced in brittle grinding mode. In chapter 5, 

we found that “the difference between the mean values of the groove depths in CS 

and UAS continue to increase because the groove depth in CS remains shallow over 

the entire length of the groove, indicating that the cutting ability of the tool was 

significantly improved by the UV assistance.” This means that the UV strongly 

contributes to the material removal when depth of cut is bigger that of critical depth of 

cut in the grinding process. This may be the reason the grinding efficiency is higher in 

brittle grinding mode compared to that in ductile grinding mode in UAIG. 

  

6.3 High accuracy internal grinding of SiC ceramics 

In this study, the workpiece is a sleeves mold used for producing aspherical 

lenses. The ground internal surface of the sleeve should be with high accuracy. The 

requirements of internal surface accuracy are shown in Table 6.3. 
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                  Table 6.3 Accuracy requirements for sleeves mold 

Item  Objective 

Surface roughness Ra ≤20nm  

Form accuracy Roundness Er ≤1μm  

Cylindricity Ec ≤3μm  

 

6.3.1 Surface roughness  

 

f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, Vc: 10μm/min, nw: 300rpm, 

   (a) Roughness vs. grinding wheel rotational speed ng in CIG and UAIG 
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f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, ng: 4000rpm, Vc: 10μm/min 

   (b) Roughness vs. workpiece rotational speed nw in CIG and UAIG  

 

 

f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, ng: 4000rpm, nw: 300rpm 

             (c) Roughness vs. feed rate Vc in CIG and UAIG  
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f: 40kHz, Grinding wheel: SD3000P100M, ng: 4000rpm, Vc: 10μm/min, nw: 300rpm 

      (d) Roughness vs. amplitude A in CIG and UAIG 

 

 

f: 40kHz, A:4μm, ng: 4000rpm, Vc: 10μm/min, nw: 300rpm, 

        (e) Roughness vs. grit size in CIG and UAIG  

            Fig. 6.5 Roughness vs. grinding parameters in CIG and UAIG  
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The effect of grinding parameters, namely the workpiece rotational speed nw, the 

wheel rotational speed ng, the wheel infeed rate Vc, grit size and the UV amplitude A, 

on surface roughness Ra in CIG and UAIG are shown in Fig. 6.5. It is found that both 

roughness in CIG or in UAIG increase with the increasing of ng and A, but decrease 

with the increasing of nw, Vc and grit size. Furthermore, it is noticed that the 

roughness Ra in UAIG are significantly smaller than those in CIG, meaning the 

presence of the UV improves the surface roughness significantly. The improvement of 

surface quality in UAIG can be considered to be the contribution of the grinding 

forces reduction [4]. Furthermore, it is concluded from the experiment results that 

roughness of the ground workpiece obtained by UAIG can agree the accuracy 

requirement. 

 

6.3.2 Roundness and cylindricity  

 

f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, Vc: 10μm/min, nw: 300rpm, 

(a) Roundness Er and cylindricity Ec vs. grinding wheel rotational speed ng in UAIG 
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f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, ng: 4000rpm, Vc: 10μm/min 

(b) Roundness Er and cylindricity Ec vs. workpiece rotational speed nw in UAIG  

 

 

f: 40kHz, A:4μm, Grinding wheel: SD3000P100M, ng: 4000rpm, nw: 300rpm, 

        (c) Roundness Er and cylindricity Ec vs. feed rate Vc in UAIG  
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f: 40kHz, Grinding wheel: SD3000P100M, ng: 4000rpm, Vc: 10μm/min, nw: 300rpm, 

     (d) Roundness Er and cylindricity Ec vs. amplitude A in UAIG 

Fig. 6.6 Roundness Er and cylindricity Ec vs. grinding parameters in CIG and UAIG  

 

The effect of grinding parameters, namely the workpiece rotational speed nw, the 

wheel rotational speed ng, the wheel infeed rate Vc, grit size and the UV amplitude A, 

on roundness Er and cylindricity Ec in UAIG are shown in Fig. 6.6. It is found that 

both roundness Er and cylindricity Ec in UAIG increase with the decreasing of ng and 

A, but increase with the increasing of nw, Vc. Furthermore, it is concluded from the 

experiment results that roundness Er and cylindricity Ec of the ground workpiece 

obtained by UAIG can agree the accuracy requirement. 
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6.3.3 Straightness 

 

(a) nw=300rpm, CIG 

 

(b) nw=300rpm, UAIG 

 

(c) nw=200rpm, CIG 

 

(d) nw=300rpm, UAIG 

 

        (e) nw=100rpm, CIG 

 

         (f) nw=100rpm, UAIG 

f: 40kHz, Grinding wheel: SD3000P100M, ng: 4000rpm, Vc: 10μm/min, A=44μm, 

oscillation stroke=12mm, oscillation speed Vos=0.1m/min 

Fig. 6.7 Straightness vs. workpiece rotational speed nw in CIG and UAIG  

 

 

        (a) ng=4000rpm, CIG 

 

        (b) ng=4000rpm, UAIG 

 

        (c) ng=5000rpm, CIG 

 

(d) ng=5000rpm, UAIG 

5.7μm 5.8μm 

4.3μm 3.8μm 

4.4μm 3.7μm 

7.5μm 7.3μm 

5.8μm 5.7μm 
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(e) ng=6000rpm, CIG 

 

(f) ng=6000rpm, UAIG 

f: 40kHz, Grinding wheel: SD3000P100M, Vc: 10μm/min, nw: 300rpm, oscillation 

stroke=12mm, oscillation speed Vos=0.1m/min 

Fig. 6.8 Straightness vs. grinding wheel rotational speed ng in CIG and UAIG 

 

 

        (a) ng=10μm/min, CIG 

 

(b) ng=10μm/min, UAIG 

 

       (c) ng=5μm/min, CIG 

 

(d) ng=5μm/min, UAIG 

 

       (e) ng=2μm/min, CIG 

 

(f) ng=2μm/min, UAIG 

f: 40kHz, Grinding wheel: SD3000P100M, nw: 300rpm, oscillation stroke=12mm, 

oscillation speed Vos=0.1m/min 

Fig. 6.9 Straightness vs. feed rate Vc in CIG and UAIG 

 

 

 

4.5μm 5.2μm 

5.7μm 

4.5μm 

5.8μm 

5.2μm 

7.2μm 4.7μm 
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(a) Vos=0.1m/min, CIG 

 

(b) Vos=0.7m/min, UAIG 

 

(c) Vos=0.4m/min, CIG 

 

(d) Vos=0.7m/min, UAIG  

 

        (e) Vos=0.7m/min, CIG 

 

        (f) Vos=0.7m/min, UAIG 

f: 40kHz, Grinding wheel: SD3000P100M, nw: 300rpm, oscillation stroke=12mm, 

oscillation speed Vos=0.1m/min 

Fig. 6.10 Straightness vs. oscillation speed in CIG and UAIG 

 

Figs. 6.7-6.10 shows the comparison of the workpiece straightness after CIG and 

UAIG with variation of the workpiece rotational speed nw, the wheel rotational speed 

ng, the wheel infeed rate Vc, and oscillation speed Vos. It can be found from the figures 

that the straightness decreases with increasing of the wheel rotational speed ng and 

oscillation speed Vos, and decreasing of the workpiece rotational speed nw and the 

wheel infeed rate Vc. The workpiece rotational speed nw, the wheel rotational speed ng, 

the wheel infeed rate Vc have significantly influence on the improvement of 

workpiece straightness, whereas oscillation speed Vos has significantly influence on 

workpiece straightness. Especially, the straightness was improved significantly when 

oscillation speed Vos is bigger than 0.4m/min both in CIG and UAIG.  

As mention above, in order to agree the accuracy requirement, the experiment 

condition should be followed as shown in Table 6.4: 

      

5.7μm 5.8μm 

3.6μm 2.6μm 

1.8μm 2.7μm 
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Table 6.4 Recommended experiment conditions for accuracy internal grinding 

Workpiece rotational speed nw (rpm)    ≤ 300 

Wheel rotational speed ng (rpm)    ≥4000 

Wheel infeed rate Vc (μm/min)  ≤10 

Grit size (μm) ≤5 

Oscillation speed Vos (m/min) ≥0.4 

amplitude A (μm) ≥4 

 

 6.4 Summary 

In this chapter, in order to highly efficient and ultra-fine internal grinding of SiC 

ceramics, the probability of internal grinding of SiC ceramics in ductile mode and 

grinding efficiency were observed. The results and conclusion can be summarized as 

follows: 

(1) Critical depth of cut is increased in UAIG compared with that in CIG, meaning 

that ductile mode grinding is easily achieved in UAIG. 

(2) Grinding efficiency is higher in brittle grinding mode compared to that in ductile 

grinding mode in UAIG. 

(3) High accuracy can be achieved by UAIG under the recommended experiment 

conditions. 
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  Chapter 7 Conclusion and future recommendation  

7.1 Conclusion 

In this study, toward the development of an alternative machining method for the 

internal grinding of SiC ceramics, the UAIG technique is applied to the internal 

grinding of SiC ceramics. For this purpose, an experimental rig was constructed by 

installing an ultrasonic spindle onto a CNC internal grinder and experimental 

investigations on the machining characteristics of SiC ceramics workpiece were 

performed on the constructed rig. In order to optimize grinding parameters to achieve 

high product quality and productivity, a grinding force model for UAIG of SiC 

ceramics has been developed. Further, to deeply investigate the material removal 

mechanism in ultrasonic assisted internal grinding of SiC ceramics, the ultrasonic 

assisted scratching (UAS) tests were performed on SiC ceramics with a self-designed 

ultrasonic unit. Besides, a validated simulation model is developed to further 

investigate material removal mechanism in UAS. The obtained results of this study 

can be summarized as following: 

 

In chapter 1, prevailing technologies, i.e., ultrasonic assisted grinding and 

ultrasonic assisted internal grinding was outlined. The classical and recent works were 

reviewed. The motivations for this study were outlined.  

 

In chapter 2, the processing principal of UAIG was introduced. The experiment 

apparatus and experiment details were presented.  

 

In chapter 3, experimental investigations on the machining characteristics of SiC 

ceramics workpiece were performed on the constructed rig. The conclusions are 

obtained as follows: 

(1) The normal and tangential grinding force in UAIG are significantly reduced 
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compared with those in CIG. This is the valuable information for the application of 

UAIG technique to the internal grinding of SiC ceramics. 

(2) The greater improvement of the form accuracy and surface quality are achieved in 

UAIG compared with those in CIG 

(3) Abrasive grain protrusions are observed sufficiently in UAIG. The pullout of grain 

is considered as the main wheel wear mechanism in CIG while the micro-fracture as 

well as the slight grain pullout are the dominant mechanisms in UAIG. Observation of 

subsurface damage shows the fracture depth is decreased and cracks are alleviated. 

 

In chapter 4, a grinding force model for UAIG of SiC ceramics has been developed. 

The model incorporates input variables of the grinding process and the UV. 

Comparing the forces predicted using the developed model with the experimental 

ones shows that the variation tendencies and the quantitative values of the predicted 

forces agreed reasonably with those of the experimental ones. Relationships between 

the input variables and the grinding forces in UAIG can be concluded as following:    

(1) The grinding forces increase in the grinding process. Furthermore, the grinding 

forces are reduced in the UAIG compared to CIG, which is attributed to the formation 

of the smaller the undeformed chip cross sectional area.    

(2) The grinding forces increase with the increasing of the workpiece rotational 

speed nw and the wheel infeed rate Vc, whereas decrease with the increasing of the 

wheel rotational speed ng, the UV amplitude Au and the oscillation frequency fo; the 

influence of the wheel rotational speed ng, the workpiece rotational speed nw and the 

wheel infeed rate Vc on grinding force are much pronounced, whereas that of the UV 

amplitude Au and the oscillation frequency fo are not very noticeable.  

(3) The force reduction of UV can be enhanced either by decreasing the wheel 

rotational speed ng, the workpiece rotational speed nw and the wheel infeed rate Vc or 

increasing the UV amplitude Au and the oscillation frequency fo.  

 

In chapter 5, to comprehend the material removal mechanism in the 

ultrasonic-assisted grinding of SiC ceramics, an ultrasonic-assisted scratching (UAS) 

test involving SiC ceramics specimen was performed on an in-house-produced 
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experimental setup. The material removal characteristics in the UAS test were 

compared to the conventional scratching (CS) test without ultrasonic vibration. The 

results and conclusion can be summarized as follows: 

(1) Both in CS and UAS processes, three types of material deformation/fracture are 

successively generated along the scratching trace: the ductile removal mode, ductile–

brittle transition mode, and brittle removal mode; the scratching groove formed 

appears straight in the CS process while it is sinusoidal in the UAS process.  

(2) The UV in the direction that vertical to work-surface strongly contributes to the 

material removal, whereas the UV in the direction that parallel to work-surface only 

results in variation of the cutting trace and hardly contributes to the material removal 

in the UAS process.  

(3) The cutting ability of the tool was significantly improved by the assistance of 

the UV. Furthermore, the critical depth of cut is increased from 0.08 μm in CS to 

0.125 μm in UAS, which is an increase of 56.25%.  

(4) The deformation of the SiC ceramics in the UAS process is equivalent to the 

combined effect of dynamic cutting with a tangential scratch velocity and UV.  

 

In chapter 6, in order to high accuracy internal grinding of SiC ceramics, the 

probability of internal grinding of SiC ceramics in ductile mode and grinding 

efficiency were observed. The results showed that critical depth of cut is increased in 

UAIG compared with that in conventional internal grinding (CIG), meaning that 

ductile mode grinding is easily achieved in UAIG; grinding efficiency is higher in 

brittle grinding mode compared to that in ductile grinding mode in UAIG. In addition, 

high accuracy can be achieved by UAIG under the recommended experiment 

conditions. 

 

7.2 Future recommendation 

The research in the ultrasonic assisted internal grinding is still in preliminary stage. 
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There are many topics and unclear points that need to be investigated to ensure the 

reliability to apply this technology on the actual machining. In what follows, some 

recommendations and notes were list for future work: 

(1) Although the material removal behavior in ultrasonic assisted grinding has been 

sufficiently studied in this study, the material removal mechanism has not been 

explored fully. This work should be done in the future work. 

(2) In this study, it is found that critical depth of cut in ultrasonic assisted grinding is 

deeper than that in the conventional grinding. This phenomenon also has been found 

in other researchers’ works. However, the reason why critical depth of cut becomes 

deeper in ultrasonic assisted grinding has not been explored fully. 

(3) Much more works should be devoted to the feasibility of the technique in practice.  
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