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ABSTRACT 

Over the past twenty years, research has moved toward intelligent systems that 

predict dangerous situations and anticipate accidents. An effective and efficient visual 

word selection method based on Bag-of-Features (BoF), which can be applied to the 

pedestrian detection problem, is proposed in this thesis. We first calculate the difference 

in the total appearance frequency of each visual word in pedestrian and non-pedestrian 

images. Visual words that exhibit greater absolute values are more efficient for pedestrian 

detection, and are thus selected. The effectiveness of the proposed method is validated by 

analyzing the distribution of selected feature points. Through this analysis, we find that 

discriminative feature points for pedestrian images are mainly located about the lower 

body, whereas those for non-pedestrian images are mainly located in background areas. 

Experimental results show that, using the proposed method, the detection rate for the 

Daimler-DB datasets exceeds 92.5%, whereas the miss rate is less than 6.8%. More-over, 

the time required for learning and detection can be reduced by approximately 50%, with 

no significant degradation in precision, using the proposed method, even if only 40% of 

the visual words are selected. Overall, our experiments offer insights into what makes 

current systems work well, and state-of-the-art results on several image recognition 

benchmarks. 
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Introduction 

Over the past twenty years, research has moved toward intelligent systems that 

predict dangerous situations and anticipate accidents [1][2][3]. Intelligent machines have 

been engineered by humans since the appearance of early civilizations. The formalization 

of Artificial Intelligence around the 1950s brought intelligent machines to a new 

dimension, in which their role in human lives has progressively gained importance. At 

this moment, humans are assisted everywhere: from hazard alarms, medical technology, 

communications, transportation, etc. Pedestrian detection is one of the most challenging 

tasks in computer vision, and has received a lot of attention in the last years. However, 

pedestrian detection also is an extremely challenging task due to the large intra-class 

variability caused by different articulated poses and clothing, cluttered backgrounds, 

abundant partial occlusions and frequent changes in illumination. The research in this 

thesis is focused on the role of Computer Vision for driver assistance, which not only 

represents a hot research topic nowadays but also is of crucial importance for human 

societies, as it is argued along this chapter. 

1.1 Advanced driver assistance systems 

Automobile is one of the most important vehicles in the world, and its invention 

has greatly affected people's lives. Since their popularization during the 20th century, 

automobiles have changed societies in many aspects: demographic distribution, urbanism, 
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social interactions, industry growth, environmental alterations, economy development, 

etc. Moreover, their potential to provide independent, flexible and fast movement to 

people has lead to new trends in city planning, traveling and employment. According to 

[4], around 50 million passenger cars and 20 million commercial vehicles are being 

produced worldwide every year. If car numbers keep increasing at the present rate, there 

will be more than a billion on the road by 2025, specially due to emerging economies like 

India and China. Unfortunately, together with the many benefits, such a technology has 

also carried a dark side since the very beginning: traffic accidents. According to a recent 

report by the W.H.O., road accidents represent the 6th cause of death in high-income 

countries and the 11th worldwide [5]. Every year almost 1.2 million people are killed in 

traffic crashes while the number of injured rises to 50 million. Unfortunately, this number 

is still growing. And behind every accident is a family tragedy.  

In order to improve safety, in the last twenty years, research has moved toward 

intelligent systems able to predict dangerous situations and anticipate the accidents. They 

are referred as advanced driver assistance systems (ADAS), in the sense that they help 

the driver by providing warnings, assisting to take decisions and even taking automatic 

evasive actions in extreme cases. They differ from the previous safety technologies in the 

sense that they do not only can rely on physical/mechanical cues from the host vehicle 

but in addition they understand the exterior world up to some extent. As will be devised 

during this thesis, Artificial Intelligence plays a key role when pursuing this 

understanding of the vehicle surroundings.  



9 

 

The first research in the area of ADAS was put by E. Dickmanns group in 1986 

with an autonomous highway driving system [6]. They presented a system able to drive 

through closed highways at speeds of up to 96 km/h by vehicle cameras, simple image 

processors and Kalman filtering. Nowadays many ADAS have already been 

commercialized and can be found from some premium vehicles (e.g. Lexus, Mercedes, 

Volvo). 

1.2 Pedestrian protection systems 

In view of above mentioned terrible statistics, during the last twenty years 

companies have progressively turned their safety efforts also to pedestrian protection. In 

these early stages, research was focused on optimizing the physical parts of the vehicle in 

order to minimize the risk and degree of injury. Some examples of this research direction, 

often referred to as improving safety through design, are collapsing fenders, hood and 

windshield, or increasing the space between hood and the engine to accommodate the 

pedestrian‟s head in the case of a crash. The first pedestrian protection system which 

using machine vision was conducted in the 1990s by Papageorgiou (MIT), Gavrila 

(University of Amsterdam and Daimler Chrysler), Broggi and Bertozzi (University of 

Parma). Nowadays, pedestrian safety has become an interesting research and 

development topic for companies, governments and research centers.  

Pedestrian Protection Systems (PPSs) are a particular type of ADAS devoted to 

pedestrian safety. A PPS is formally defined as a system that detects both static and 

moving people in the surroundings of the vehicle (typically in the front area) in order to 

provide information to the driver and perform evasive or braking actions on the host 
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vehicle if needed. Pedestrian detection before the impact (either long or short term) is 

crucial given that the severity of injuries for the pedestrian decreases with speed of the 

crashing vehicle. Thus, any reduction in the speed can drastically reduce the severity of 

the crash. As mentioned at [7], pedestrians have a 90% chance of surviving to car crashes 

at 30km/h or below, but less than 50% chance of surviving to impacts at 45 km/h or 

above.  

Figure 1.1 illustrates the potential of PPSs. They can anticipate the potential 

accident they can not only provide warnings to the driver in a reduced time but also 

control the different active measures like airbags or brakes. Hence, the distance where 

pedestrians can be severely damaged is significantly reduced. 

 

Figure 1.1.  The outline of the pedestrian protection Systems 

 

1.3 Generic framework  

The simplest technique for determining the initial location of an object is the 

sliding window method, whereby detector windows at various scales and locations are 

shifted over the image. However, the computational cost of high-precision detection in 
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every sliding window is often too high to allow for real-time processing[8][9]. After that, 

they soon started to include other stages aimed at both reducing the number of false 

positives and to accelerate the processing. For example, tracking techniques are also 

being included to the systems recently. 

Some researcher proposed a generic architecture to be used as a framework for 

pedestrian detection from a vehicle camera [4]. The architecture consists of six 

conceptual modules each one with its own responsibilities: 

 Preprocessing, which takes the input data from the camera and prepares it to the 

further processing, such as exposure time, gain adjustments and calibration, to 

mention a few. 

 Foreground segmentation extracts regions of interest or candidates from the 

image to be sent to the classification module, avoiding as many background 

regions as possible. 

 Object classification, which receives a list of candidates likely to contain a 

pedestrian. In this stage, they are classified as pedestrian or non-pedestrian with 

the aim of minimizing the number of false positives as well as the false negatives. 

 Verification and refinement. Many systems contain one step that verifies and 

refines the ROIs classified as pedestrians, referred to as detections. The 

verification filters false positives using criteria not overlapped with the classifier 

while the refinement performs a fine segmentation of the pedestrian (not 

necessarily silhouette-oriented) so to provide an accurate distance estimation or to 

support the following module, tracking. 
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Figure 1.2.  The architecture of the pedestrian detection system (Figure form[4]) 
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 Tracking, which follows the detected pedestrians along time with several 

purposes such as avoiding spurious false detections, predict the next pedestrian 

position and direction and even other high-level tasks, like inferring pedestrian 

behavior. 

 Application, which takes high level decisions by making use of the information 

provided by the previous modules. This module represents a complete area of 

research, which includes not only driver monitoring or vehicle speed but also 

psychological issues, human-machine-interaction, etc. 

 

Figure 1.2 shows a schematic overview. 

 

1.4 State of the Art 

1.4.1 Preprocessing 

The preprocessing module includes tasks such as exposure time, gain adjustments, 

histogram equalization, spatial alternation and camera calibration, etc. 

Although low-level adjustments, such as exposure or dynamic range are normally 

not described in ADAS literature, some recently published papers have focus on image 

enhancements for these systems. Real-time adjustments are a recurring difficulty, 

specially in urban scenarios. For example, short tunnels, narrow streets and the fast 

motion of the scene (common conditions in PPSs) can result in images with over/under 

saturated areas or poorly adjusted dynamic range, which creates additional difficulties for 

the latter algorithms of the system. Although not specifically devoted to ADAS, Nayar et 

al. [10] present some approaches for performing a locally adaptive dynamic range: fusion 
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of different exposures, spatial filter mosaicing and pixel exposures, multiple image/pixel 

sensors, etc. Besides, during last years solutions exploiting high dynamic range images 

[11] are gaining interest in driver assistance due to their potential to provide high contrast 

in the aforementioned scenarios. In fact, these cameras cover both VS and NIR spectra so 

they are also useful for night time vision.  

The existing approaches can be divided into two categories: monocular-based and 

stereo-based. In the former case, the algorithms are mainly based on the study of visual 

features. In [12], Broggi et al. correct the vertical image position by relying on the 

detection of horizontal edges oscillations: the horizon line is computed according to the 

previous frames. A comparative study of different monocular camera pose estimation 

approaches is presented in [13]. It includes horizontal edges, features-based and frame 

difference algorithms. Recently, [14] presents a probabilistic framework for 3D geometry 

estimation based on a monocular system. A training process, based on a set of 60 

manually labeled images, is applied to form a prior estimation of the horizon position and 

camera height (i.e., camera pose values).  

High dynamic range sensors provide the possibility of obtaining highly contrasted  

images in outdoor scenarios. In the next years, this technology will be of crucial 

importance in PPSs in order to avoid the over/under-saturated regions that are typically 

seen in ADAS imagery. In fact, many of the failures of the current detection algorithms is 

related to poorly contrasted images so this technology will undoubtedly benefit the 

system performance. 
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The more recent of the reviewed works show a clear trend towards using stereo-

based approaches to obtain accurate camera pose estimates in spite of the additional CPU 

time required for disparity/depth estimation. 

1.4.2 Foreground segmentation 

Foreground segmentation, sometimes referred to as candidate generation, extracts 

regions of interest (ROIs) from the image to be sent to the classification module, avoiding 

as many background regions as possible. The simplest technique to obtain the initial 

object location hypotheses is the sliding window technique, where detector windows at 

various scales and locations are shifted over the image. The computational costs of the 

high-precision detection approach for every sliding window are often too high to allow 

for real-time processing[4].  In this thesis we added a so-called Candidate Generation 

Pruning (CGP) step to our system,  that extract specific windows in the image. These 

techniques are of remarkable importance not only to reduce the number of candidates but 

also to avoid scanning regions like the sky. The key to this stage is to avoid missing 

pedestrians; otherwise the subsequent modules will not be able to correct the error. While 

describing this module we will often use the term pedestrian size constraints (PSC), 

which refers to the aspect ratio, size and position that candidates shall fulfill to be 

considered to contain a pedestrian. 
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 (a)                                    (b)                                    (c) 

Figure 1.3.  Foreground Segmentation Schemes 

 

An exhaustive scanning approach [15] that selects all of the possible candidates in 

an image according to PSC, without explicit segmentation. This method is known as 

sliding window. For instance, in [15], the authors start by scanning the image with 

candidate windows of 64 × 128 pixels, placing these windows every 8 pixels. Then they 

reduce the image size by a factor of 1.2, and perform the same scan again. This procedure 

has two main drawbacks: 1) the number of candidates is large (see Fig 1.3(b)), which 

makes it difficult to fulfill real-time requirements, although some proposals have recently 

studied this problem; and 2) many irrelevant regions are passed to the next module (e.g., 

sky regions or ROIs inconsistent with perspective), which increases the potential number 

of false positives. As a result, other approaches are used to perform explicit segmentation.  

The exhaustive scan is typically used in general human detection systems, for 

example, image retrieval, whereas PPSs tend to use some kind of segmentation. In fact, 

the latter can take advantage of some application prior knowledge (e.g., it is not 

necessary to search the top area of the image), so that the number of ROIs to process can 

be greatly reduced. For example, a typical exhaustive scan on a 640 × 480 image can 
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provide from 400,000 to 3,000,000 ROIs, depending on the sampling step and the 

minimum candidate size.  

According to the literature, stereo is the most successful option. 2D-based 

analysis does not provide convincing results at this stage. For instance, symmetry is not 

very reliable so extra-cues such as depth are necessary, hotspot analysis seems to be ruled 

by heuristics and attentional bottom-up pixel-based algorithms do not provide accurate 

ROI positions, so the reduction of the number of candidates is not as large as expected. 

More sophisticated appearance based techniques are likely to be used during 

classification, not during candidates generation. In addition, the accuracy of motion-

based approaches depends on driving speeds, and the reliability of those approaches has 

not been demonstrated under the wide range of ADAS conditions.  

1.4.3 Object classification 

The object classification module receives a list of ROIs that are likely to contain a 

pedestrian. In this stage, they are classified as pedestrian or non-pedestrian with the goal 

of minimizing the number of false positives and false negatives. 

Silhouette matching: The simplest approach is the binary shape model. [16], in 

which an upper body shape is matched to an edge modulus image by simple correlation 

after symmetry-based segmentation. A more sophisticated approach is the Chamfer 

System, a silhouette-matching algorithm proposed by Gavrila et al. in [17]. This system 

consists of a hierarchical template-based classifier (Fig 1.4) that matches distance-

transformed ROIs with template shapes in a coarse-to-fine manner. The shape hierarchy 

is generated offline by a clustering algorithm. This technique has also been exploited for 
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TIR images in [18]. Also in the TIR spectrum, Nanda et al. [19] perform probabilistic 

template matching on a multiscale basis, by using just three templates (each for a defined 

scale).  

 

 

Figure 1.4.  Hierarchy of templates used in the Chamfer System (figure from [20]). 

 

 

Appearance: The methods included in this group define a space of image features 

(also known as descriptors), and a classifier is trained by using images known to contain 

examples (pedestrians) and counter-examples (non-pedestrians). The seminal work of 

Dalal and Triggs [15] showed the importance of using rich block-based descriptors such 

as the Histograms of Oriented Gradients (HOG) representation, which provides both 
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robustness and distinctiveness. Based on this work, other authors have proposed 

additional features that enrich the visual representation, including the use of color 

through self-similarity features (CSS) [21], texture through block-based Local Binary 

Patterns (LBP) [22], and the design of efficient gradient-based features via integral 

channels [23]. 

 

Figure 1.5.  Histograms of Oriented Gradients by Dalal and Triggs (figure from [8]). 

 

Following a holistic approach (i.e., target is detected as a whole), in [24][25], 

Gavrila et al. propose a classifier that uses image grayscale pixels as features and a neural 

network with local receptive fields (NN-LRF [26]) as the learning machine that classifies 

the ROIs generated by the Chamfer System.   

Dalal and Triggs [8] present a human classification scheme that uses SIFT 

inspired [27] features, called histograms of oriented gradients (HOG), and a linear SVM 

as a learning method. A HOG feature also divides the region into k orientation bins (in 
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this case, k = 9), but instead of computing the ratio between two bins, they define 4 

different cells that divide the rectangular feature, as illustrated in Fig. 1.6. In addition, a 

Gaussian mask is applied to the magnitude values in order to give more weight the center 

pixels, and the pixels are interpolated with respect to pixel location within a block (both 

factors disallow the use of the integral image). The resulting feature is a 36-dimensional 

vector containing the summed magnitude of each pixel cells, divided into 9 bins. These 

features have been extensively exploited in the literature.  

 

 

Figure 1.6.  First five edgelet features selected by AdaBoost in the approach by Wu 

and Nevatia (figure from [28]). 

 

Wu et al. [28] study the performance of short segments (up to 12 pixels long) of 

lines or curves, referred to as edgelets, as features for AdaBoost for VS images. In this 

case, a mask is attached to each feature in order to provide pixel-wise segmentation (Fig 

1.7). The same authors study edgelets and HOG together with AdaBoost and SVM 
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learning algorithms in both the VS and TIR [29]. Each of the selected cells is referred to 

as a shapelet feature.  

Other features and learning algorithms used in the literature include the gradient 

magnitude and quadratic SVM, Four Directional Features and Gaussian kernel SVM, and 

intensity image with Convolutional Neural Networks or with an SVM.  

 

 

Figure 1.7.  Part-based classification using gradient-based features 

(figure from[30]) 

Part-based approaches [30], contrary to the previous techniques, combine the 

classification of different parts of the pedestrian body (e.g., head and legs), instead of 

classifying the entire candidate as a single entity.  

Lin and Davis [31] have recently proposed a technique that combines some of the 

aforementioned paradigms to a greater or lesser extent, i.e., silhouette, appearance, 
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holistic and parts-based. First, HOG descriptors are computed for the whole image 

following [8]. Then, the descriptors are used to extract a silhouette, which is fed to a 

probabilistic hierarchical part-matching algorithm. Finally, HOGs are again computed for 

the closest regions of the matched silhouette, serving as features for a radial basis 

function (RBF) kernel SVM. 

Other approaches: Following recent research in object detection, Leibe et al. [32] 

present a technique termed the implicit shape model, which avoids the candidate 

generation step. During recognition, each detected keypoint is matched to a cluster, 

which then votes for an object hypothesis using Hough voting, thus avoiding a candidate 

generation step. The Chamfer distance is used to provide a fine silhouette segmentation 

of the pedestrian. In [33], Seeman et al. improve this technique with multi-aspect 

(viewpoint and articulation) detection capabilities, extending the hypothesis voting to 

object shapes, rather than just objects.   

Silhouette matching methods are not applicable as stand-alone techniques. Even 

the elaborate Chamfer System needs an extra appearance-based step. In contrast, methods 

that exploit appearance seem to indicate the current direction of research, specifically 

revolving around the continuous development of new learning algorithms and features for 

use in these algorithms, not only in pedestrian detection but also in general object 

classification.  

Despite the large number of papers, approaches tend to be poorly compared to one 

another in PPSs research. Wojek et al. [34] try shed light on the comparison of classifiers 

with a study on some popular features and learning methods. Two conclusions are 
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highlighted: HOGs and shape context features are the best option, independent of the 

learning algorithm, and feature combination significantly improves detector performance. 

In recent years, however, the lack of comparisons has been amended thanks to Dalal‟s 

proposal, which has been established as a defacto baseline.  

 

 

1.5 Objectives 

In this thesis, in order to reduce the number of traffic accidents, injuries, and 

deaths, we focusing on verification task which is foremost stage in aforementioned PPS 

systems.  

A comprehensive review of recent work and existing techniques for pedestrian 

detection is carried out. The survey represents a crucial part of the research in the sense 

that it helps to visualize what has and has not been made and the current needs in this 

area.  

We also describe the process of pedestrian detection using a BoF approach, and 

examine some existing problems. In order to address these issues, we propose a very 

simple method to reduce the dimension of the classifier by setting a limit value to remove 

irrelevant and redundant visual words. 

According to the reports almost half of pedestrian who die in road traffic crashes 

are occurred during the night. Thus, a study of pedestrian detection via our visual words 

select method from near-infrared images is made. In addition, we investigate the 
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distribution of discriminative feature points which belong to the selected visual words 

from NIR images and VS images. 

Of course, there are many interesting aspects that are left unexplored since they 

are out of the thesis scope. We think that enumerating some of these aspects can help to 

provide a better focus on the aim of the thesis.  

At first, although a very strong emphasis in time consumption and realistic 

computational requirements is made along the thesis, and in fact is a key piece of it, we 

do not spend efforts on real-time optimizations.  

And then, the algorithms are not specifically trained with children examples. As 

will be seen, the foreground segmentation is thought to work on adults, although the 

system will be able to detect pedestrians of very different sizes and proportions. Hence, 

children younger than 10 years old are not taken into account in the statistics, not for 

good nor for bad. Young children are expected to go with an adult, as in fact it is seen in 

the presented sequences, and according to NHTSA [35], children younger than 10 

represent just the 4% of the killed and the 10% of the injured, so they are also left for 

future investigation. 

 

1.6 Thesis outline 

The thesis is organized in the following chapters. Chapter 2 focuses on the study 

of pedestrian detection based Bag-of-Features. Chapter 3 introduce our proposed visual 

words selection strategy for pedestrian detection. Chapter 4 presents the results of 

distribution of the selected feature points. Chapter 5 presents an improved visual words 
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selection method via set two thresholds. Chapter 7 provide formal conclusions, formal 

discussion and perspectives on the research area.  
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 CHAPTER 2

Pedestrian Detection Based on Bag-of-Features 

In this chapter, we will introduce the flow of Bag-of-Features to detect the 

pedestrian.  

2.1 Why using the BoF to detect the pedestrian? 

The simplest technique to obtain the initial object location hypotheses is the 

sliding window technique, where detector windows at various scales and locations are 

shifted over the image. The computational costs of the high-precision detection approach 

for every sliding window are often too high to allow for real-time processing[4]. To 

speed up the detection process, the pedestrian detection process is often decomposed into 

the potential target‟s detection and classification to reduce the search area[5]. First, the 

system defines a region of interest (ROI), which is possibly associated with a potential 

pedestrian. Second, detection is validated by a high-precision identifying method for the 

ROI. 

The seminal work of Dalal and Triggs [6] showed the importance of using rich 

block-based descriptors such as the Histograms of Oriented Gradients (HOG) 

representation, which provides both robustness and distinctiveness. Based on this work, 

other authors have proposed additional features that enrich the visual representation, 

including the use of color through self-similarity features (CSS) [7], texture through 



27 

 

block-based Local Binary Patterns (LBP) [8], and the design of efficient gradient-based 

features via integral channels [9].  

 

Figure 2.1.  Pedestrian detection progress of BoF 
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All of these approaches are holistic, in the sense that the whole pedestrian is 

described by a single feature vector and is classified at once. Because of this, those 

approaches also brings some problems, especially when the pedestrian‟s position cannot 

be in the middle of the ROI search window. 

Recently, some authors have proposed successful methods for combining local 

detectors [36][28] and integrating the evidence from multiple local patches [37][16]. This 

type of approaches provides more flexibility in the spatial configuration of the different 

parts of the object, which leads to higher adaptability to the different poses of the 

pedestrian. However, those methods are usually restricted when pedestrian at far scales.  

Many of the current methods for image classification represent images as 

collections of independent patches characterized by local visual descriptors, and vectors 

quantize them by the K-means method to produce so-called visual words [38]. The 

introduction of such visual codebooks has allowed significant advances in image 

classification, especially when combined with bag-of-features (BoF) models[39]. One 

advantage of this method is that the frequency histogram is irrelevant to the location of 

the local feature and is very useful in detecting the image of the pedestrian with position 

shift. 

However, not every visual word created by K-means is efficient for classification. 

A compact visual codebook has advantages in both computational efficiency and memory 

usage. 

A compact and discriminative visual vocabulary has been proposed by 

pioneering[16]. The work hierarchically merges the visual words in a large-sized initial 
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vocabulary, and requires the new histograms to maximize the conditional probability of 

the true labels of the training images. This is a rigorous but complicated criterion that 

involves nontrivial computation after each merging operation. These lead to a heavy 

computational load when dealing with large-sized initial visual words. 

 Other authors have proposed a visual words select method via Principle 

Component Analysis (PCA) algorithm [40]. However, it seems to be difficult to achieve 

both speed and good discrimination. 

In this section, we describe the pedestrian detection approach by BoF. BoF is an 

object classification method which ignores the positional information of the local features 

extracted from the images and uses the occurrence frequency of visual words. 

Figure 2.1 shows the basic flowchart of pedestrian detection by BoF, which 

consists of feature extraction (a), building of visual vocabulary (b), building a frequency 

histogram (c), and training the classifier (d). 

In the training stage, local features are extracted from the training samples, and 

are clustered into X groups with the K-means algorithm. After clustering, the visual 

vocabulary is built, and the frequency histogram of each visual word, which records the 

num-ber of its occurrences, is calculated. The frequency histogram based on the visual 

vocabulary is considered as the input classifier, which is trained with the support vector 

machine (SVM) algorithm. In the recognition stage, the frequency histogram of local 

features extracted from the test samples is calculated in the same manner, and the 

constructed classifier will make the decision based on this frequency histogram. The 

detail of each process is described below. 
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2.2 Local feature extraction 

To describe the image, we must extract features from the input images. Typically, 

three local feature extraction methods are used: interest point sampling, regular dense 

sampling, and random sampling. Interest point detection is often used because of its good 

performance in some fields. The scale invariant feature transform (SIFT) [14] and 

speeded up robust features (SURF) [15] are two typical methods based on interest point 

feature extraction. SIFT can robustly identify objects even among clutter and under 

partial occlusion, because the SIFT feature descriptor is invariant to uniform scaling, 

orientation, and partially invariant to affine distortion and illumination changes. However, 

SIFT needs to structure the Gaussian scale space to find interest points, and therefore 

cannot always extract enough features for low-resolution pedestrian images.  

            

(a) SIFT feature points                                        (b) Dense-SIFT 

Figure 2.2.  Example of feature points 

 

To obtain better discriminative power, we utilize a regular dense sampling method, 

known as dense-SIFT descriptors. This is roughly equivalent to running SIFT on a dense 
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grid of locations at a fixed scale and orientation, but without the need to structure the 

Gaussian scale space to find interest points. 

2.3 Forming the visual vocabulary and frequency histograms 

Various clustering methods can be used to form the visual vocabulary, such as k-

means [41], affinity propagation [42], self-organizing maps [43], fuzzy c-means [44], etc. 

Each method has its strengths, but inevitably has some weaknesses. In terms of a 

combination of efficiency and accuracy, k-means is a satisfactory clustering method.  

Visual vocabularies are created as follows. After extracting a large number of 

local patch descriptors (here, dense-SIFT descriptors) from a set of training images, k-

means clustering is used to group these descriptors into k clusters, where k is predefined. 

The center of each cluster is called the “visual word,” and a set of visual words forms a 

“visual vocabulary.” Each image descriptor is then labeled with the most similar visual 

word, according to the Euclidean distance between the two, and the image is 

characterized by a k-dimensional histogram of the number of occurrences of each visual 

word. The frequency histogram of each visual word forms the training data that is input 

to the SVM. 

2.4 SVM classifier 

SVM is a well-known statistical learning method [20]. The objective of SVM 

learning is to find a hyperplane that maximizes the inter-class margin of the training 

samples. Feature vectors are projected into a high-dimensional space by a kernel function. 

The final SVM classifier is given by the following expression 
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   ,

i i
i

f x K x x
 (1) 

 

where    are support vectors and  (   ) is the kernel function. There are several 

common kernel functions, such as a linear kernel, polynomial kernel, radial basis 

function (RBF) kernel [21], etc. The choice of kernel function is dependent on the data 

and application. We tested each kernel function, and found that an RBF kernel gives the 

best performance without any obvious deterioration in efficiency. Thus, in our 

experiments, we use an RBF kernel. 
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 CHAPTER 3

A Visual Words Selection Strategy for Pedestrian Detection 

A compact visual codebook has advantages in both computational efficiency and 

memory usage. For example, when linear or nonlinear SVMs are used, the complexity of 

computing the kernel matrix, testing a new image, or storing the support vectors is all 

proportional to the codebook size, n. Also, many algorithms working well in a low 

dimensional space will encounter difficulties such  as singularity or unreliable parameter 

estimate when the dimensions increase. This is often called the “curse of 

dimensionality”.  

A compact visual codebook provides a lower-dimensional representation and can 

effectively avoid these difficulties. Moreover, in patch-based object recognition, the 

histogram used to represent an image is essentially a discrete approximation of the 

distribution of visual words in that image. A large-sized visual codebook may over-fit 

this distribution, as pointed out in [45].  

One disadvantage of the dense regular grid is that a large number of redundant 

features are included in the visual vocabulary, meaning more time will be spent on 

feature extraction and classification during the training and recognition stage. A simple 

and efficient visual vocabulary is expected to speed up learning and classification. 

Recently work of creating a compact and discriminative visual codebook has been 

seen in [46], which hierarchically merges the visual words in a large-sized initial 

codebook.  
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To minimize the loss of discriminative ability, the work in [46] requires the new 

histograms to maximize the conditional probability of the true labels of training images 

(or image regions in their work). This is a rigorous but complicated criterion that involves 

nontrivial computation after each merging operation. Moreover, at each level of the 

hierarchy, the optimal pair of words to be merged are sought by an exhaustive search. 

These lead to a heavy computational load when dealing with large-sized initial codebooks. 

Creating a compact codebook is essentially a dimensionality reduction problem.  

To preserve the discriminative power, any classification performance related 

criterion may be adopted, for example, the rigorous Bayes error rate, error bounds or 

distances, class separability measure, or that used in [46].  

In this chapter, we consider two-class classification problems, and propose a very 

simple method to reduce the dimension of the classifier by setting a limit value to remove 

irrelevant and redundant visual words. Our method calculates the difference in the total 

appearance frequency for each visual word of the pedestrian and non-pedestrian images. 

The visual words that exhibit greater absolute values are considered to be more efficient 

for pedestrian detection, and are selected. Experimental results show that the proposed 

method retains almost the same detection accuracy when only 40% of the visual words 

are selected. 
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Figure 3.1.  Flowchart of proposed method 
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3.1 Flowchart of visual words select method 

A brief overview of this approach is given in Figure 3.1. First, the quantization 

histograms obtained from each training image are divided into positive images and 

negative images (Figure 2.1(a)). The total frequency histograms for positive sample    

and negative sample   are then computed by the following equation, as shown in Figure 

2.1(b). 
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where X is the number of visual words in a dictionary. N and M represents the 

number of pedestrian and non-pedestrian training samples, respectively.     ( ) 

represents the frequency of x‟th visual word on i‟th pedestrian image.     ( ) represents 

the frequency of x‟th visual word on j‟th non-pedestrian image. 

Next, we normalize the two total frequency histograms as 
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The difference between    and    is calculated to obtain the difference vector 

(Figure 2.1(c)) 

      1 0
=

diff
V x H x H x  (4) 

 

If      ( )  is positive, this visual word is effectively classified as a positive 

sample, and vice versa. The larger the absolute value of      ( ), the more beneficial the 

x-th feature to the classification. 

The visual words are sorted in descending order of absolute value, and a limit 

value L is set to determine the expected size of the new visual vocabulary to be preserved 

(Figure 2.1(d)). Visual words for which      ( )  is below the limit value L are 

considered to be redundant, and are screened out of the original dictionary. The 

remaining L visual words comprise a new visual vocabulary (shown in Figure 2.1(e)). 

Next, the corresponding dimensions of the original histograms   are removed according 

to the new visual vocabulary. The new frequency histogram of the visual vocabulary 

forms the input to the classifier, which is trained by the SVM. 

Based on our experimental results, we found that L could be set as 0.4X with little 

change in detection accuracy (e.g., if X = 500, then L = 200). 
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3.2 Benchmarking  

In order to comparison to other state-of-the-art proposals, multiple public 

pedestrian datasets have been collected. Public datasets are necessary for two reasons: 1) 

to evaluate algorithms with different example sets, taken at different places under 

different conditions, but specifically from different research groups (which adds extra 

variability); and 2) to compare new algorithms with existing ones, that is, given that it is 

hard to reproduce algorithms, the easiest way of establishing comparisons is to compare 

results from the same datasets following the same criteria.  

There are some specific requirements that a pedestrian dataset shall fulfill to be 

specifically used in PPSs. Some of them are a must in any set while others make easier 

the task of evaluating different aspects of classifiers. They can be summarized in the 

following points: Topic significance. This first one may seem obvious, but it is important 

that the test data is the most similar to the final application as possible in this case ADAS 

environments. This means that pedestrians must be standing approximately in the same 

plane as the on-board camera placed at a realistic height from the ground. Quantity. 

Given the variability of the target, the number of examples shall be high, for example, at 

least 1, 000 positive samples for training. Resolution. As has been seen, the range of 

pedestrians sizes in the image is large due to perspective and distance. Given that 

algorithms can either make use of the resized or the original size (depending on the 

classifier) it is desirable to make both approaches available. By providing this data 

researchers get a well defined set in both cases avoiding to have to reconstruct these cases. 
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Sequences. Cropped samples are useful for the object classification module, but in order 

to benchmark the whole system full annotated video sequences are required. 

Multiple public pedestrian datasets have been collected over the years; INRIA [1], 

ETH [2], TUD-Brussels [3], Daimler [4] (Daimler stereo [5]), Caltech-USA [6], and 

KITTI [7] are the most commonly used ones. They all have different characteristics, 

weaknesses, and strengths.  

INRIA is amongst the oldest and as such has comparatively few images. It 

benefits however from high quality annotations of pedestrians in diverse settings (city, 

beach, mountains, etc.), which is why it is commonly selected for training (see also §4.4). 

ETH and TUD-Brussels are mid-sized video datasets. Daimler is not considered by all 

methods because it lacks color channels. Daimler stereo, ETH, and KITTI provide stereo 

information. All datasets but INRIA are obtained from video, and thus enable the use of 

optical flow as an additional cue.  

Daimler Pedestrian Classification Benchmark (DC-01)[47] and the Computer 

Vision Center Pedestrian Dataset are the first specifically ADAS oriented pedestrian 

datasets, containing images taken from cameras mounted on a vehicle. The samples are 

significantly smaller (36 and 24 pixels high, respectively), all taken from street scenarios, 

so in contrast with INRIA, so in this case there are not out-of-the-topic images. 

Today, Caltech-USA and KITTI are the predominant benchmarks for pedestrian 

detection. Both are comparatively large and challenging. Caltech-USA stands out for the 

large number of methods that have been evaluated side-by-side. KITTI stands out 

because its test set is slightly more diverse, but is not yet used as frequently. For a more 
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detailed discussion of the datasets please consult [8,7]. INRIA, ETH (monocular), TUD-

Brussels, Daimler (monocular), and Caltech-USA are available under a unified evaluation 

toolbox; KITTI uses its own separate one with unpublished test data. Both toolboxes 

maintain an online ranking where published methods can be compared side by side.  

 

 

Figure 3.2.  Positive examples from different pedestrian datasets 

 

From all these sets, just DC-01, CVC-01 and NICTA are ADAS-specific, so 

although the others can already provide an intuition on detection algorithms performance, 

just the former provide relevant statistics for ADAS. Two pedestrian datasets have been 

presented aimed at resolving this lacks. The first one is the Caltech Pedestrian Dataset [2], 

which contains on-board video  sequences containing instance annotation. Although this 

dataset seems promising at a first glance given the spectacular number of samples stated, 

the number of single pedestrians is similar to the previous ones, and are not so precisely 
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annotated as for example NICTA. Moreover, the authors do not provide testing data, 

which represents a big inconvenience for researchers. The second dataset is Daimler 

Pedestrian Detection Benchmark (DC-02), which contains grayscale resized training 

examples and fully annotated video sequences. Fig 3.2 illustrates some examples of these 

datasets.  

 

                    

Figure 3.3.  Positive examples from different pedestrian datasets 

 

In this thesis we present a near infrared reflection dataset (NIR). For NIR images, 

we collected a set of video sequences containing pedestrians from multiple view points 

and of multiple sizes, using a monochrome board camera KPC-EX500BA and a NIR 

lamp RM-240 (spectral wavelength in 0.7–2.5 microns). Images were captured at night 

and the height of the persons in the images ranged from 50 to 300 pixels. Some of the 

training and testing images are shown in Fig. 2.7. 

 

3.3 Experimental Results 

In this section, we evaluate the performance of our proposed method in terms of 

its detection rate and processing time. In addition, we analyze the distribution of 
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discriminative features by visualizing the selected features. We implement our proposal 

method using Matlab, and use the open-source toolbox VLFeat  to extract SIFT features 

and form the visual vocabulary. We use the LibSVM to train the classifier, which is 

integrated software for support vector classification. 

3.3.1 Experimental setup 

We used the Caltech Pedestrians [24], DaimlerChrysler Pedestrian Classification 

Benchmark (Daimler-CB) [25], and Daimler Pedestrian Detection Benchmark (Daimler-

DB) [26] datasets to conduct a series of experiments. These datasets were collected by 

the on-board camera within a vehicle, and include images of pedestrians from different 

viewpoints. 

In our experiments, we applied training to these three datasets, and created the 

detectors respectively. The sizes of both the training and test images were uniformly 

fixed at 48 × 96 pixels. 

We sampled SIFT features densely over 4-pixel intervals, with a block size of 8 × 

8 pixels. This results in 256 SIFT feature points being extracted from each 48 × 96 pixel 

sample. Using the dense-SIFT feature descriptors calculated from all training samples, 

we undertook k-means clustering of the features to form a visual vocabulary. The SVM 

detectors were then trained using RBF kernels. The performance of SVM classifier 

depends on the choice of the regularization parameter C and the kernel parameters  . We 

use the grid search with cross-validation to determine the optimal values of the 

parameters C and  . Experimental results show that the classifier attains optimal 

performance when C = 16 and    . 
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Figure 3.5.  Relation between visual word X and detection precision. 
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3.3.2 Detection accuracy with various sizes of visual vocabulary 

To clarify the relationship between the detection accuracy and the size of the 

visual dictionary, and determine the initial number of visual words in the proposed 

method, we conducted the following experiment. 

We randomly selected 3000 pedestrian and 3000 non-pedestrian images from the 

Caltech, Daimler-CB, and Daimler-DB datasets as the training samples. For the test 

samples, 3000 pedestrian and 3000 non-pedestrian images were selected from the 

remainder of each dataset. 

We varied the size of the initial visual vocabulary X from 200 to 2000, and tried 

to ascertain the optimal value for each dataset. The detection accuracies for different X 

are shown in Figure 3. 

The results in Figure 3. show that optimal detection accuracy of each dataset is 

achieved when X is around 500. Thus, in the following evaluations, the initial number of 

visual words X is set to 500. 

3.3.3 Detection accuracy with various sizes of selected visual word 

In this section, we describe the relation between the limit size L of the visual 

vocabulary and the detection accuracy for the three datasets. 

Using an initial visual vocabulary size X = 500 for training and testing images, the 

value of L was varied from 400 to 100. The detection accuracy at different L values is 

shown in Figure 3.. The results show similar results for the three datasets, with small 

variations in accuracy when L ≥ 200.  
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Figure 3.6.  Relation between limit value L and detection precision. 
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This implies that 200 efficient visual words in the original visual vocabulary 

produces almost the same performance as using all 500 visual words. In addition, the 

detection precision decreases more quickly when L < 200. 

These results show that the proposed method retains similar detection accuracy 

when only 40% of the visual words are selected. Thus, we can set L = 0.4X without 

significantly affecting the accuracy. 

3.3.4 Evaluation of pedestrian detection by cross experiments 

In this section, we evaluate the proposed method for pedestrian detection using 

the following cross experiment. First, we set X = 500 and L = 200. We randomly selected 

3000 pedestrian images for Groups A and B, and 3000 non-pedestrian images for Groups 

C and D from the Daimler-DB dataset. Different combinations of these groups were then 

used to perform the cross experiment. 

 

TABLE I.  
EVALUATION OF THE PROPOSED METHOD 

Training Data Test Data True Positive False Positive 

A C 

A D 

B C 

B D 

B D 

B C 

A D 

A C 

92.8% 

92.5% 

93.1% 

92.6% 

6.3% 

6.6% 

6.0% 

6.8% 
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Table 1 shows the experimental results. We found that the detection rate for each 

group was greater than 92.5%, and the miss rate was less than or equal to 6.8%. This 

confirms that the proposed method is effective for pedestrian detection applications. 

3.3.5 Processing time performance 

In this section, we study the relationship between the processing time and the 

number of selected visual words L. We compare the SVM runtime on the same desktop 

with an Intel i3-540 CPU and 2 GB RAM.  

 

 

Figure 3.7.  Change in recognition time with L using 6000 images.  

 

Figure 3. shows that the recognition time increases with the value of L for 6000 

images. As mentioned above, the detection accuracy is not obviously reduced as L is 

decreased to 200. Thus, the experimental results show that the classification time required 
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by the SVM can be reduced by about 50% using the proposed method, without any 

significant degradation in accuracy, even if only 40% of the visual words are selected. 

 

3.4 Pedestrian Detection from Near-Infrared 

Normal cameras based on visible spectrum images (hereafter called VS images) 

are not very satisfactory in the absence of plenty of illumination. In the day time, this 

illumination can come from the sun, but at night, artificial illumination is required. 

Important areas of interest could be lit with bright lights but undesirable activities are 

more likely to occur in darker areas. Infrared (IR) cameras are ideally suited to imaging 

under these conditions, as they sense emitted radiation from the objects of interest, such 

as pedestrians. However, IR cameras are still expensive to deploy on a large scale. 

Therefore, in this paper, we attempt to detect pedestrians at night by near-infrared (NIR) 

cameras which are cheaper. 

3.4.1 Sensors 

Cameras can be divided according to their working range in the electromagnetic 

spectrum. Visible spectrum (VS) is in the 0.4-0.74 μm range, near infrared (NIR) covers 

0.75-1.4 μm and thermal infrared1 (TIR) captures in 6-15 μm. Fig 3.8 illustrates the same 

image in VS and TIR for an in-door scenario. However, as will be seen in this chapter, 

these ideal laboratory conditions differ from the real outdoor ones used in actual PPSs. 

Pedestrian detection is typically focused on daytime, hence VS cameras are the most 

extensively used ones. Some papers make also use of NIR, as will be seen later, and in 
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fact they are cheaper than TIR ones. NIR cameras capture relative temperature, which is 

very convenient for distinguishing hot targets like pedestrians or vehicles from cold ones 

like asphalt or trees, hence they are used for pedestrian detection at night. Without 

enough ambient light, VS cameras provide too dark and poorly contrasted scenes, so 

pedestrian detection is not possible. Along the review we will assume that VS sensors are 

used if not stated the contrary. 

            

(a) VS                                                           (b) TIR 

Figure 3.8.  Appearance of VS and TIR for the same scene(photo by ADAS group). 

 

 

3.4.2 Experimental setup 

We now describe the datasets used in our experiments. 

NIR image data: For NIR images, we collected a set of video sequences 

containing pedestrians from multiple view points and of multiple sizes, using a 

monochrome board camera KPC-EX500BA and a NIR lamp RM-240 (spectral 

wavelength in 0.7–2.5 microns). Images were captured at night and the height of the 
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persons in the images ranged from 50 to 300 pixels. Some of the training and testing 

images are shown in Fig 3.9(a). 

VS image data: For VS images, we tested our experiments on the Daimlar-DB 

which is a publicly available dataset [22]. The dataset is collected by an on-board camera 

within a vehicle that includes pedestrians from different viewpoints Fig 3.9 (b)). 

 

 

Figure 3.9.  Example images of NIR images dataset and VS images dataset used in 

this experiment. 

 

For both the NIR images and the VS images, we selected 3000 pedestrian and 

3000 non-pedestrian images randomly as the training samples respectively (we also tried 

more train data, but the accuracy was no significant increase). And the test samples 

included 3000 pedestrian and 3000 non-pedestrian images selected from the rest of the 

dataset. 

(a) NIR images dataset

(b)  VS images dataset
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3.4.3 The number of discriminative visual words in NIR and VS image 

In this section, we describe the relation between the selected visual word L and 

the detection precision. 

We set the initial visual vocabulary size X =500 for NIR and VS images and then 

set the selected visual word L from 400 to 100. The DET curves of the detection accuracy 

with difference L are shown in Fig 3.10. We found that, in both of the two model images, 

the precision variation was very small when L≥200, which means that 200 efficient visual 

words in the original visual vocabulary can result in almost the same performance as with 

all 500 visual words. In addition, the detection precision decreases more quickly as L 

decreases for L<200. 

The experiment results show that the proposed method keeps nearly the same 

detection accuracy even if only 40% of the visual words are selected. 
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(a)    DET curves on NIR images 

 

 
 

(b)    DET curves on VS images 

 

Figure 3.10.  The relation between selected visual word L and detection 

precision. 
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3.4.4 Comparison with the state-of-the-art 

In this section, Our final detectors were evaluated with other state-of-the-art 

methods using our NIR dataset and Daimlar -DB. 

We performed the standard per-image evaluation used in pedestrian detection [2]. 

We added a so-called Candidate Generation Pruning (CGP) step to our system, in order 

to obtain a fair comparison with the best performer in this dataset [48]. Making use of 

projective geometry, the CGP algorithm forecasting the possible arisen location so as to 

confirm the scope of target searching. This permits us to both accelerate the detection of 

pedestrians (as fewer windows are evaluated by the classifier), and remove false positives 

standing on non-plausible locations of the targets, thus improving the resulting accuracy. 

Results are shown in Fig. 3.11. As a matter of fact, the relative ordering of 

methods seems roughly preserved across different pedestrian datasets. For the both of 

two datasets, our detector is competitive in terms of the detection quality with respect to 

ChnFtrs and provides significant improvement over HOG+SVM. 

It is worth mentioning that many of recent works are focus on integrate different 

features (e.g., gradient magnitude, LUV color channels, motion) in order to feed more 

relevant information, so that they can be integrated in our framework with moderate 

changes. This would further increase the accuracy of our method. 
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(a)    Results on the NIR pedestrian dataset 

 

 

 
 

 

(b)    Results on the Daimlar pedestrian dataset 

 

Figure 3.11.  Performance of our method. 
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3.5 Summary 

This chapter presented a method of obtaining a compact and discriminative visual 

vocabulary for pedestrian detection. Our visual word selection method calculates the 

difference in the total appearance frequency of each visual word in pedestrian and non-

pedestrian images. The visual words that exhibit greater absolute values are considered to 

be more efficient for pedestrian detection, and are thus selected. The experiments also 

showed that the learning and detection process can achieve similar precision in about 

50% of the time using the proposed method, even if only 40% of the visual words are 

selected. Furthermore, we detect pedestrians at night by near-infrared (NIR) cameras. We 

found our method is also For the both of two datasets, our detector is competitive in 

terms of the detection quality with other  state-of-the-art. 
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 CHAPTER 4

Distribution of the Selected Feature Points 

In  this chapter, we analyze the distribution of selected feature points from 

pedestrian and non-pedestrian images, and present the average number of discriminative 

features in the pedestrian images. In addition, we discuss the causes of false positive (FP) 

and false negative (FN) results. 

4.1 Define the discriminative visual words 

 

 

Figure 4.1.  Justification of    and    with visual words. 

 

Figure 4.1 shows the result of sorting the difference vector obtained from the 

process in Figure 3.1(d) with an initial visual dictionary size X = 500. The horizontal axis 

represents the number of visual words, and the vertical axis represents the difference in 
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the total occurrence frequency of each visual word between the pedestrian and non-

pedestrian images. Visual words for which the difference is positive are considered to 

contribute to the determination of pedestrians, whereas negative values imply that the 

visual word contributes to the determination of non-pedestrian objects. As shown in 

Figure 4.1, we defined the top 100 visual words for determining pedestrians as   , and 

the 100 visual words that best represent non-pedestrian objects as   . 

 

4.2 Visualization of selected feature points 

Figure 4.2 illustrates examples of the distribution of    („○‟ in the figure) and    

(„□‟ in the figure) in the case of true positive (TP), true negative (TN), FN, and FP 

detections. 

In the pedestrian images in Figure 4.2(a), it can be see that    feature points are 

mainly located about the body, whereas    are mainly located in the background. In the 

rejected non-pedestrian image shown in Figure 4.2(b), the distribution of feature points 

varies widely, but there are many more    feature points than   . 

In the FN image in Figure 4.2(c), the    points are again mainly located about the 

body, but there are fewer than in the TP image. We suspect this is because FN images 

have complicated backgrounds, which will affect the detection accuracy. In contrast, in 

the FP image, the    points are in the majority, and so this image was determined to 

contain a pedestrian. 
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(i) Original image   (ii)         (iii)                   (i) Original image   (ii)         (iii)    

(a) True positive image                                   (b) True negative image 

 

 

           

(i) Original image   (ii)         (iii)                  (i) Original image   (ii)         (iii)    

 (c) False negative image                                  (d) False positive image 

 

Figure 4.2.  Visualization of selected feature points. 
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4.3 Average distribution of the selected feature points 

In this section, we analyze the average distribution of selected feature points from 

TP, TN, FN, and FP images.  

We randomly selected 500 correctly classified pedestrian and non-pedestrian 

images for the TP and TN dataset, and 500 incorrectly classified pedestrian and non-

pedestrian images for the FN and FP dataset from the classification results of Section IV-

D. We then examined the average number of selected discriminative features of each set. 

To compare the difference in the feature point distribution of pedestrian and non-

pedestrian images, we divided each detection window into 11 × 22 grids, and computed 

the average number of feature points in each cell.  

Figure 4.3 shows the average distribution of    and    feature points in TP, TN, 

FN, and FP image sets. The white area indicates a large number of feature points in the 

figure, and the black area indicates the opposite. 

The figure shows that, for pedestrian images (TP or FN),    feature points are 

mainly located about the body, and    points are primarily in the background. This is 

because features located in the background are highly consistent with those extracted 

from non-pedestrian images. In the non-pedestrian images (TN or FP), both    and    are 

uniformly distributed in the images. This is because the position of    changes with the 

content of the non-pedestrian images. 
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(i)   : 85.9      (ii)   : 39.7                 (i)   : 57.4       (ii)   : 67.5 

(a) True positive image                 (b) True negative image 

         

(i)   : 63.4      (ii)   : 57.6                 (i)   : 74.5       (ii)   : 47.6 

(c) False negative image                 (d) False positive image 

 

Figure 4.3.  Average distribution and number of selected features. 

 

  



61 

 

Furthermore, in the pedestrian images,    are mainly located in the lower body 

areas. We speculate that this is because, in pedestrian images, feature points located 

around the shoulder areas suffer more interference with the background, so the 

discriminative features are mainly distributed in the lower part of the body. 

Figure 4.3 also shows the average number of selected discriminative feature 

points for each image set. It can be seen that the average number of    points in TP 

images (85.9) far outweighs that of    (39.7), but in the TN images, the number of    

points (67.5) outweighs that of    (57.4). This is the greatest difference between the TP 

and TN images. In contrast, in the FN images, the count of    (63.4) is close to    (57.6), 

whereas in the FP images,    (74.5) far outweighs    (47.6). 

Overall, it can be said that the number of discriminative features is a significant 

factor in the detection accuracy. Furthermore, an unknown image can be determined to 

contain a pedestrian when the    count is greater than the    count, but if    is in the 

majority, the classification result is more likely to be a non-pedestrian image. 

4.4 Selected feature points in NIR and VS images 

In this section the distributions of selected feature points from pedestrian images 

and non-pedestrian images will be analyzed and the average counts of selected 

discriminative features of the NIR and VS images are given. 
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(a) NIR images 

 

 

                

(b) VS images 

 

Figure 4.4.  Average distribution of selected feature points. 
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To compare the difference in the feature points distribution between the NIR and 

VS images, we divided each detected window into 11 × 22 grids, and computed the 

average value of the number of feature points in each grid. 

Figure 4.4 show the visualization of the average distribution of the selected 

discriminative feature points from 3000 images for each type. The white area indicates a 

large number of feature points in the figure, and the black area indicates the opposite. In 

both the NIR and VS images,    feature points are mainly located in the body areas,    

are mainly located in the background, and in the non-pedestrian images, both    and    

are uniformly distributed in the images. The reason is that the position of    changes with 

the content in the non-pedestrian images. 

Furthermore, in the NIR pedestrian images,    are mainly distributed in the upper 

body areas, that is, the shoulders and the back, but in the VS pedestrian images,    are 

mainly located in the lower body areas. This is the greatest difference between the NIR 

and VS images. We speculate that this is because in the NIR pedestrian images, since the 

NIR irradiates, the pedestrian‟s back is shown as white and the background areas are 

mainly black, so the discriminative features are mainly distributed in these regions. But, 

in VS pedestrian images, the image resolution is higher than that in the NIR images, and 

the feature points located around the shoulder areas are more easily interfered with by the 

background, so the discriminative features are mainly distributed in the lower part of the 

body. 
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Table 2 gives the average count of the selected discriminative feature points for 

each modality. From the table it can be seen that the average number of    far outweighs 

the    in the pedestrian images, but in the non-pedestrian images the number of    

outweighs the   , in both the NIR and VS images. In addition, in both of the pedestrian 

and non-pedestrian images, the average number of    and    in VS images is more than 

in the NIR images. This is due to the VS images having a higher resolution than the NIR 

images. 

4.5 Summary 

In this chapter, we investigated the distribution of discriminative feature points 

belonging to the selected visual words from pedestrian images and non-pedestrian images. 

As shown by the experimental results, discriminative feature points in the pedestrian 

images are mainly located in body areas, whereas the feature points are uniformly 

distributed in non-pedestrian images. In addition, we also investigated the distribution of 

TABLE II.  
AVERAGE COUNT OF SELECTED FEATURES 

 Positive Negative 

 
𝐹  𝐹  𝐹  𝐹  

NIR 74.3 30.2 49.6 66.7 

VS 85.9 39.7 57.4 67.5 
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discriminative feature points from NIR images and VS images, respectively. We found 

that, in the NIR pedestrian images, the discriminative feature points are mainly 

distributed in the upper body areas, but in the VS pedestrian images, they are mainly 

located in the lower body areas.  
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 CHAPTER 5

An Improved Visual Codebook Selection Method by set two thresholds 

In this chapter, to minimize its loss of discriminative power, we propose an 

improved code words selection method based on Bag-of-Features(BoF). We first 

calculate the difference in the total appearance frequency of each visual word in 

pedestrian and non-pedestrian images. Then two thresholds are set for selected code 

words which have greater absolute values. The experiment results show that the proposed 

method is comparable with state-of-the-art methods for pedestrian detection. Furthermore, 

the effectiveness of the proposed method is validated by analyzing the distribution of 

selected feature points. 

We have proposed a method to reduce the dimension of the classifier [49]. In  

[49], the difference in the total appearance frequency for each visual word of the 

pedestrian and non-pedestrian images are calculated. The visual codebook that exhibit 

greater absolute values are considered to be more efficient for pedestrian detection, and 

are selected. However, this method can only obtain a total number of visual codebook by 

setting one limit value to measure the effective of visual codebook. But selected visual 

codebook includes discriminative visual word for both pedestrian and non-pedestrian 

images. Just one limit value is different to know how many visual word have 

discrimination for pedestrian and non-pedestrian, respectively. In this paper, we propose 

an improved method to reduce the dimension of the classifier by setting two limit value 

to remove irrelevant and redundant visual codebook. By using two variable limit value, it 

can be obtained the optimal number of visual word for pedestrian and non-pedestrian, 
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respectively. Experimental study shows that the compact visual codebook created in this 

way can achieve excellent classification performance even after a considerable reduction 

in size. 

5.1 Overview of our approach 

In this chapter, we investigated the distribution of discriminative feature points belonging 

to the selected visual words from pedestrian images and non-pedestrian images. 

 

            

Figure 5.1.  Flowchart of the proposed method. 

 

As mentioned at [49], there is a disadvantage of the dense regular grid is that a 

large number of redundant features are included in the visual vocabulary. A compact 

visual codebook has advantages in both computational efficiency and memory usage. For 

example, when linear or nonlinear SVMs are used, the complexity of computing the 

kernel matrix, testing a new image, or storing the support vectors is all proportional to the 
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codebook size. Also, many algorithms working well in a low dimensional space will 

encounter difficulties such as singularity or unreliable parameter estimate when the 

dimensions increase. A compact visual codebook provides a lower-dimensional 

representation and can effectively avoid these problems. In other words, creating a 

compact codebook is essentially a dimensionality reduction problem.  

We have proposed a method to reduce the dimension of the classifier by setting a 

limit value to remove irrelevant and redundant visual words. Firstly, the difference in the 

total appearance frequency for each visual word of the pedestrian and non-pedestrian 

images are calculated. The visual codebook that exhibit greater absolute values are 

considered to be more efficient for pedestrian detection, and are selected. However, this 

method can only obtain a total number of visual codebook by setting one limit value to 

measure the effective of visual codebook. But selected visual codebook includes 

discriminative visual word for both pedestrian and non-pedestrian images. Just one limit 

value is different to know how many visual word have discrimination for pedestrian and 

non-pedestrian, respectively. Hence, we propose an improved method to reduce the 

dimension of the classifier by setting two limit value to select the discriminative visual 

words for pedestrian and non-pedestrian, respectively. By using two variable limit value, 

it can be obtained the optimal number of visual word for pedestrian and non-pedestrian, 

respectively. Details of each process are described below.  

A brief overview of this approach is given in Fig. 3. First, the quantization 

histograms obtained from each training image are divided into positive images and 
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negative images (Fig. 5.1 (a)). The total frequency histograms for positive sample    and 

negative sample   are then computed by the following equation, as shown in Fig. 5.1 (b). 
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where   is the number of training samples, and X is the number of visual words in 

a dictionary.    represents the label of the pedestrian or non-pedestrian in the training 

sample   *     +. 

Then we normalize two total frequency histograms as 
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3) 

And the difference between   ( )  and   ( )  is calculated to obtain the 

difference vector (Fig. 5.1 (c)) 

 
     +

=
diff

V x H x H x



               (

4) 

If      ( ) is positive, this visual word is effectively classified as a positive sample, 

and vice versa. The larger the absolute value of      ( ), the more beneficial the x-th 

feature to the classification. 

And then, the corresponding visual codebook which       value are positive and 

negative are sorted by descending order of absolute value, respectively. And two limit 
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values    and    are set to determine the expected size of the new visual vocabulary to 

be preserved (Fig. 5.1 (d)). Visual words for which      ( ) is below the limit value    

and    are considered to be redundant, and are screened out of the original dictionary. 

The remaining       visual words comprise a new visual vocabulary (shown in Fig. 

5.1 (e)). Next, the corresponding dimensions of the original histograms   are removed 

according to the new visual vocabulary. The new frequency histogram of the visual 

vocabulary forms the input to the classifier, which is trained by the SVM. 

 

            

Figure 5.2.  The selection and visualization examples of features. 

 

Fig.5.2 shows an example of the distribution of selected feature points by our 

method. (a) is an original image of a pedestrian. (b) is dense-SIFT feature points 

distribution which extracted from the image (a). (c) is selected feature points distribution 

by our method. 
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5.2 Experiments and results 

In this section, we evaluate the performance of our proposed method in terms of 

its detection rate. In addition, we analyze the distribution of discriminative features by 

visualizing the selected features. 

5.2.1 Detection accuracy with various sizes of selected visual word 

In this section, we describe the relation between the limit size    and    of the 

visual vocabulary and the detection accuracy. 

 

            

Figure 5.3.  Performance of our method. 

 

We performed the standard per-image evaluation used in pedestrian detection [2]. 

We added a so-called Candidate Generation Pruning (CGP) step to our system, in order 

to obtain a fair comparison with the best performer in this dataset [48]. Making use of 

projective geometry, the CGP algorithm forecasting the possible arisen location so as to 
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confirm the scope of target searching. This permits us to both accelerate the detection of 

pedestrians (as fewer windows are evaluated by the classifier), and remove false positives 

standing on non-plausible locations of the targets, thus improving the resulting accuracy. 

Using an optimal initial visual vocabulary size X = 500 for training and testing 

images, the value of    and    was varied from 250 to 0, respectively. In our 

experiments, we found that the accuracy variation was very small when   ,       , 

and when       ,       with negligible loss in detection accuracy, which means 

that 200 efficient visual codebook in the original visual vocabulary can result in almost 

the same performance as with all 500 visual words. In addition, the detection precision 

decreases more quickly when       ,      . The detection accuracy at different    

and    values is shown in Fig. 6. 

Furthermore, the results show that the miss rate reduce 3% by proposed method 

than [49].This confirms that the proposed method is effective for pedestrian detection 

applications. 

5.3 Summary 

In this chapter, we propose an efficient code words selection method based on 

Bag-of-Features(BoF), which can be applied to the pedestrian detection problem. Our 

visual word selection method calculates the difference in the total appearance frequency 

of each visual word in pedestrian and non-pedestrian images. Then two thresholds are set 

for selected code words which have greater absolute values. The experiment results show 

that the proposed method is comparable with state-of-the-art methods for pedestrian 
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detection. Furthermore, the effectiveness of the proposed method is validated by 

analyzing the distribution of selected feature points. As shown by the experimental 

results, discriminative feature points in the pedestrian images are mainly located in body 

areas, whereas the feature points are uniformly distributed in non-pedestrian images. The 

experiments also showed that the miss rate reduce 3% by our proposed method than 

original method. 
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 CHAPTER 6

Conclusions 

Pedestrian protection systems represent a key technology to reduce the number of 

accidents between pedestrians and vehicles. Given the difficulties that such systems shall 

overcome, that is, realtime detection of changing targets in uncontrolled outdoor 

scenarios, pedestrian protection is by no means an easy task. From our point of view, 

research was too focused on specific tasks of the system like classification and forgot the 

relation between them. In this thesis we have developed the research from a global 

viewpoint.   

6.1 Summary and contributions 

Although each chapter contains a specific discussion section that analyses and 

points out the most relevant advantages and disadvantages of the explored algorithms and 

of their combination between the modules of the proposed architecture, in this chapter we 

highlight some more global conclusions, which are in fact linked with the contribution of 

the thesis.  

In the survey of the state of the art, we have extensively reviewed the literature by 

first introducing a general architecture that consists of different modules, each with its 

own objectives, in which we fit every analyzed technique in the literature. As has been 

seen, this general architecture is of crucial importance to analyze the literature in a 

sensible and ordered way. In the chapter we have highlighted a set of interesting points 
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that lead the thesis studies and in fact will lead the future lines of research, like problems 

usually omitted in the literature (e.g., foreground segmentation) or techniques that have 

demonstrated their classification capabilities (e.g., histograms of oriented gradients).  

According to the review, it can be said that there is a clear research trend in every 

module. For example, the promising algorithms in foreground segmentation are the road 

based ones; the research in classification is mostly focused on gradient-based features and 

several typical learning algorithms, but recent multiclass/multipart approaches are also 

gaining importance; and the Kalman filter is the most used algorithm for the tracking 

module. In the survey we have also highlighted the lack of datasets. In order to evaluate 

all the different proposals, we have introduced a pioneer multi-purpose dataset aimed at 

being utilized as an evaluation framework for different modules of a PPS: foreground 

segmentation, classification and whole system.  

In addition, we presented a method of obtaining a compact and discriminative 

visual vocabulary for pedestrian detection. Our visual word selection method calculates 

the difference in the total appearance frequency of each visual word in pedestrian and 

non-pedestrian images. The visual words that exhibit greater absolute values are 

considered to be more efficient for pedestrian detection, and are thus selected. The 

experiments also showed that the learning and detection process can achieve similar 

precision in about 50% of the time using the proposed method, even if only 40% of the 

visual words are selected. Furthermore, we detect pedestrians at night by near-infrared 

(NIR) cameras. We found our method is also For the both of two datasets, our detector is 

competitive in terms of the detection quality with other  state-of-the-art. 
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we investigated the distribution of discriminative feature points belonging to the 

selected visual words from pedestrian images and non-pedestrian images. As shown by 

the experimental results, discriminative feature points in the pedestrian images are mainly 

located in body areas, whereas the feature points are uniformly distributed in non-

pedestrian images. In addition, we also investigated the distribution of discriminative 

feature points from NIR images and VS images, respectively. We found that, in the NIR 

pedestrian images, the discriminative feature points are mainly distributed in the upper 

body areas, but in the VS pedestrian images, they are mainly located in the lower body 

areas. 

6.2 Perspectives 

Driver assistance systems, and particularly pedestrian protection systems, are a 

very young area of research. Hence, the future research possibilities are so numerous and 

diverse that they can easily occupy a chapter on its own. We condense the lines we 

consider of key importance in a few general points.  

Short term challenges. The pursuit of a perfect PPS based on Computer Vision 

only shall be considered a long term goal. The development of a PPS that works under 

restricted conditions is already useful. For instance, a system that works only at daytime, 

under good weather conditions (no heavy rain/snow/fog), over a range of distances up to 

50 m is, from our viewpoint, the first intermediate challenge for the community. 

According to [4], these conditions represent a very relevant scenario in accidents.  

Long term goals: focus on the real problem. It is clear that many new proposals 

are tested on too easy data. Developing systems capable of working under restricted 
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conditions is different from developing techniques that just work on high-resolution near 

non-occluded pedestrians, because this can lead to a loss of perspective of the real 

problem. Although it can seem strange to provide statistics of 10% DR or 10 FPPI, 

specially in front of other more traditional areas like face detection or object 

classification, this poor performance in realistic complex examples is more useful for the 

community than presenting a 99% in nearly toy examples.  

Face the problem globally. In addition to developing the individual parts of a PPS, 

which is one of the keys to reach good performance rates, a global view of the problem 

can lead us to interesting conclusions as the ones assessed in this thesis.  

Overall vision of future ADAS. When talking about a global viewpoint, one also 

has to have in mind that a PPS is likely to work with many other ADAS. This leads to a 

point in which the different systems have to share sensors and computation time, which 

in fact has both disadvantages such as the restrictions when choosing sensors, but also 

advantages in the sense that techniques like stereo reconstruction, free space analysis and 

even sensor fusion data can be shared between them. 
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APPENDIX A 

Performance Evaluation 

The statistical validation of any decision process is crucial to determine the 

performance of a wide variety of applications, for example from medical treatments to 

spam filtering or object detection. Let us define the null hypothesis as the default state of 

some phenomenon, for instance that a patient does not have a disease or that a given 

window in an image contains just background clutter. If we label the natural state of the 

null hypothesis as a negative, then the opposite state (i.e., the patient does have a disease 

and a pedestrian has been found in the image) is referred to as a positive. Since the 

decision process is aimed at rejecting or not rejecting the null hypothesis, then there exist 

two basic sources of error: 

 false positives (FP) when the null hypothesis is incorrectly rejected (i.e., 

finding a disease in a healthy patient or detecting a pedestrian in a 

background image), or  

 false negatives (FN) when the null hypothesis is incorrectly not rejected (i.e., 

finding healthy an ill patient or failing to find a pedestrian when in fact there 

is one).  

Given these two errors, the performance measurement of a decision process 

consists in counting the number of FP and FN in the context of for example the total 

number of real positives or negatives, the total number of decisions, etc. On the contrary, 
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a true positive (TP) is found if the null hypothesis is correctly rejected, whereas a true 

negative (TN) is found when the null hypothesis is correctly not rejected. Figure D.1 

illustrates these concepts. 

A.1    Visualization of selected feature points 

Although basic measurements can be defined as real numbers, for example in 

terms of true positive rate (number of true positives out of the total number of positives), 

most classification algorithms typically provide a confidence value that shall be 

thresholded to take a decision. Thus, by varying such threshold we can plot different 

curves that show the classifiers performance in terms of the behavior of the basic 

measurements.  

The Receiver Operating Characteristic (ROC) curve takes two measures into 

account, false positive rate (FPR) and true positive rate (TPR):  

FP
FPR

TN FP


                                                (A.1) 

TP
TPR

TP FN


                                                 (A.2) 

 

where FPR is plotted on the x-axis and TPR on the y-axis. The perfect classifier 

would have TPR=1 and FPR=0, placing the performance point at the top-left corner of 

the ROC. This curve has been used in a large number of papers [114, 68]. Dalal et al. [35] 

makes use of a complementary curve, called Detection Error Trade-off (DET), which 
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plots Miss Rate (MR = 1 − TPR) on the y-axis and FPR on x-axis, both axes using a 

logarithmic scale instead of a linear one.  

Another widely used plot is Recall-Precision (RP) curve: 

eR call TPR                                                   (A.3) 

TP
Precision

TP FP


                                           (A.4) 

with Recall on the x-axis and Precision on the y-axis, although sometimes their positions 

are interchanged and 1−Precision is used instead of the regular Precision. The perfect 

classifier in this case would have Recall= 1 and Precision= 1, which means that neither 

false positives nor false negatives exist. For instance, this curve is used in [47].  

The final curve is Sensitivity-Specificity, defined as    

Sensitivity TPR                                                      (A.5) 

TN
Specificity

TN FP


                                              (A.6) 

 

plotting sensitivity on x-axis and specificity on y-axis. Again, both Sensitivity and 

Specificity would be 1 in a perfect classifier.  

A.2    Window-based versus image-based evaluation 

The common procedure while evaluating classifiers (either for medical tests or 

object classification, for instance) is to select a training set containing both positive and 

negative samples and a testing set with also positives and negatives. In order to plot a 
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typical curve like ROC we just have to count the number of TP, FN, TN and FP on the 

testing set and compute the corresponding rates. This is possible because all the measures 

are well defined. In the case of pedestrian classification, a common procedure is to work 

with cropped images, say 1 000 test positives and 5 000 test negatives. However, some 

authors (e.g., [35]) just provide pedestrian-free images to randomly crop (both train and 

test) negatives, so the set is not well defined, that is, it is difficult to reproduce the exact 

results that the researchers present. In this case, different authors count False Positives 

Per Window (FPPW), which is equivalent to FPR but leave open the number of test 

negatives. If a range of confidence testing thresholds to count TPR and FPPW is used, 

this performance measure leads to a ROC in which the axes are TPR and FPPW, this 

latter one often using a logarithmic scale. We call this evaluation window-based. As it is 

made in the literature, we analyze the whole curve but special attention will be put to the 

point of the curve, which represents one false positive each 10,000 tested negatives.  

Another type of evaluation is focused on detection rather than classification, i.e., 

placing the performance in the context of frames rather than on isolated examples. In this 

case, since there are not cropped samples anymore, the way that a detection is considered 

as a TP or FP depends on the similarity of the detection with the annotations of a set of 

test frames. In this case, a ROC has the axes TPR and false positives per image (FPPI). 

The most used similarity measure at this moment is the detection-annotation overlap: a 

detection d is marked as TP if its overlap with a window annotation a exceeds a certain 

threshold Γ, where 
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( )
( , )

( )

area a d
overlap d a

area a d


                                             (A.7) 

 

otherwise the detection is marked FP. This evaluation is called image-based. In 

this case, the curve shall be read in a more global manner than in the image-based in the 

sense that the preferred FPPI working range will depend on the requirements for the 

given module/system. We focus on the DR value when FPPI= 100, which corresponds to 

one average single false positive per frame, which is assumable for a system consisting of 

a classifier and cluster given that a tracking process is likely to absorb most of the 

spurious false positives. In this thesis, the case in which multiple detections fulfilling this 

criterion for a single annotation is treated differently if we evaluate the classifier or the 

whole system (also the clustering). For example, in the case of the system, each 

annotation account for just a TP, the additional detections associated to the annotation are 

marked as FP, whereas in the case of the classification they are all marked as TP since 

there is not any clustering technique involved. This is detailed in the corresponding 

chapters. 
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APPENDIX B 

List of Acronyms 

ABS   antilock braking system 

ACC   adaptive cruise control 

ADAS  advanced driver assistance systems 

AFL   advanced front lighting 

CGP   candidate generation performance 

CPA   candidates per annotation 

DR   detection rate 

EOH   edge orientation histograms 

ESC   electronic stability control 

FN   false negatives 

FP   false positives 

FPPI   false positives per image 

FPPW   false positives per window 

FPR   false positives rate 

HF   Haar feature 

HFOV   horizontal field of view 

HOG   histograms of oriented gradients 

II   integral image 

NIR   near infrared 
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NN   neural network 

NPC   non pedestrian candidates 

PPS   pedestrian protection system 

ROI   region of interest 

SIFT   scale invariant feature transform 

SVM   support vector machine 

SHOG   simplified HOG 

TIR   thermal infrared 

TN   true negatives 

TP   true positives 

TPR   true positives rate 

VFOV   vertical field of view 

VS   visible spectrum 
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APPENDIX C 

List of State of the Art 
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Feat. type 

VJ[50] 94.73% DF  

    

Haar 

Shapelet [51] 91.37% − 

     

Gradients 

PoseInv [31]  86.32% − 
   



 

HOG 

LatSvm-V1 [52]  79.78% DPM 
   



 

HOG 

ConvNet[53] 77.20% DN 
  



  

Pixels 

FtrMine [14]  74.42% DF 

     

HOG+Color 

HikSvm [54] 73.39% − 




    

HOG 

HOG [15] 68.46% −  

    

HOG 

MultiFtr [55]  68.26% DF  

    

HOG+Haar 

HogLbp[22]  67.77% − 

     

HOG+LBP 

AFS+Geo[56] 66.76% − 
 



   

Custom 

AFS[56] 65.38% − 
      

Custom 

LatSvm-V2[36] 65.38% DPM 




 



 

HOG 

Pls[57]  62.10% −  

    

Custom 

MLS[58]  61.03% DF 

     

HOG 

MultiFtr+CSS[21] 60.89% DF 

     

Many 

FeatSynth[56]  60.16% −  

    

Custom 

pAUCBoost[59] 59.66% DF  

    

HOG+COV 

FPDW[60]  57.40% DF 
      

HOG+LUV 

ChnFtrs[23]  56.34% DF  

    

HOG+LUV 

CrossTalk[61]  53.88% DF 
 



   

HOG+LUV 

DBN−Isol[62] 53.14% DN 
  



  

HOG 

ACF[63]  51.36% DF 

     

HOG+LUV 

RandForest [64] 51.17% DF 




    

HOG+LBP 

MultiFtr+Motion[21] 50.88% DF 

    

 Many+Flow 

SquaresChnFtrs[65]  50.17% DF 

     

HOG+LUV 

Franken[66]  48.68% DF 
 



   

HOG+LUV 

MultiResC[48]  48.45% DPM 
 





 



HOG 

Roerei [65] 48.35% DF 

   





HOG+LUV 

DBN−Mut[67] 48.22% DN 
 







 

HOG 
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MF+Motion+2Ped[68] 46.44% DF 
 



  

 Many+Flow 

MOCO[69]  45.53% − 





   

HOG+LBP 

MultiSDP[70]  45.39% DN 



 

  

HOG+CSS 

ACF-Caltech[63] 44.22% DF 

     

HOG+LUV 

MultiResC+2Ped[68] 43.42% DPM 
 





 



HOG 

WordChannels[71] 42.30% DF 

     

Many 

MT-DPM[1] 40.54% DPM 
   

 



HOG 

JointDeep[70] 39.32% DN 
 



   

Color+Gradient 

SDN[72] 37.87% DN 
  

 

 

Pixels 

MT-DPM+Context[1] 37.64% DPM 
 





 



HOG 

ACF+SDt[73] 37.34% DF 

    

 ACF+Flow 

SquaresChnFtrs[65] 34.81% DF 

     

HOG+LUV 

InformedHaar[74] 34.60% DF 

     

HOG+LUV 
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