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Abstract 

To handle serious oil spills, many strategies have been proposed to design novel 

materials for oil–water separation. In the past decades, bioinspired surfaces with 

superwettability have been explored and utilized in oil-water separation. The underwater 

superoleophobic and superhydrophobic-superoleophilic materials were usually used for 

oil-water separation. However, their application has been limited because the complex 

fabricating process, fragile roughness structure, easy to be polluted and lose efficacy. 

Therefore, this study has aimed on developing simple and versatile strategies to fabricate 

low cost and robust oil-water separation devices with superwettability. 

In Chapter 1, the research backgrounds, fundamental understandings of 

superwettability, research significance and research purpose were particularly described. 

In Chapter 2, the experimental section was presented. The experimental materials, 

methods and characterizations were particularly described in this chapter. 

In Chapter 3, the author has developed a facile method for fabricating underwater low 

adhesive hydrogel-coated functionally integrated device to separate oil from mixtures 

with water. The wettability of device surface before and after modification was studied 

and the oil-water separation efficiency was also investigated. The results showed that the 

device has realized the effective separation of oil-water mixtures and can be reused. What 

is more, it also can be used for selective removal of little water from oil surface by means 

of a magnetic field. 

In Chapter 4, the author has developed a versatile and simple strategy to fabricate 

robust, self-cleaning and superhydrophobic surfaces for both soft and hard substrates by 

a straightforward spraying method. The wettability of substrate surface before and after 

modification was studied. The results showed that the superhydrophobic surface was 

successfully fabricated through the method. Meanwhile, the superhydrophobic surface 

showed remarkable robustness against knife scratch and sandpaper abrasion. Further, it 
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could be used for oil-water separation as well as showed excellent separation efficiency 

and reusability. 

In Chapter 5, the author has developed a facile way to make robust, transparent and 

superhydrophobic surface. Candle soot was used as rough surface template and then the 

roughness structure was reinforced through chemical vapor deposition method. Further, 

the surface was modified into superhydrophobic and used for oil-water separation. The 

wettability of substrate surface before and after modification was tested. Meanwhile, the 

robustness and oil-water separation efficiency were investigated. The results revealed that 

the robust, transparent and superhydrophobic surface was successfully fabricated and 

showed excellent separation efficiency and reusability in oil-water separation. 

In chapter 6, general conclusions of the research were made.  
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Chapter 1 Introduction 

1.1 Background 

Textile industries, petrochemical, food industries and oil pollution accidents on marine 

transportation of oil productions have caused extensively oil pollution and has become a 

serious global environmental problem.[1] For example, the “Deepwater Horizon” oilrig 

belonging to BP exploded in 2010 and leaked at least 210 million gallons of oil into the 

Gulf of Mexico, this was the most serious pollution of the last decade.[2] The leaked oil 

usually polluted the water source people used, the polluted water often contained toxic 

chemicals, which would threaten people’s health or even made a destructive impact on 

the ecosystem. Therefore, the development of technique for separation and collection oil 

pollutions from water is become more and more urgent. 

Traditional separation techniques generally include combustion method, solidification 

method and biodegradation method. Combustion method is simple and direct, which 

ignite the oil component directly to remove oil from mixture. However, this method has 

caught further environment pollution and a destruction of ecological environment. 

Solidification method has been also used in oil-water separation constantly, this method 

utilizes chemical coagulator to congeal oil component in oil-water mixture. However, this 

process takes long time and unable to completely congeal oil content, meanwhile, 

chemical coagulator polluted the environment secondly. Biodegradation method utilize 

microorganism and enzyme to degrade oil content from oil-water mixture which would 

completely remove oil content, but this method suffers from high cost. Therefore, these 

techniques suffer from the limits of high operation cost, low efficiency and secondary 

pollution. Besides, they are very hard to apply to the separation of oil-water emulsions.[2] 

Although traditional physical separation materials such as hydrophobic/oleophilic 

adsorption materials and filtration membranes are widely used in practical applications 

because of their low cost and high efficiency,[3] they still have two important problems:[6] 
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First, they are very easy to be polluted by oil which leads to the loss of function. Also, 

the pores of the material are easy to be clogged and the material surface are very easy to 

be fouled by organic oil, this would usually lead to a serious reduction of separation 

efficiency and fluid flow rate. Second, because of the poor mechanical property the 

separation materials are very difficult to reuse and thus cause secondary contamination to 

the environment.[4] Furthermore, the safe handling of the oil sorbent waste is challenging, 

as is the recovery of the absorbed oil.[5] 

Therefore, advanced oil-water separation techniques and materials should be develop. 

The oil-water separation material which can selectively permeate or absorb oil (or water) 

but repelling water (or oil) would be highly desirable.[7] Because oils and water are 

intrinsically immiscible, materials with superwettability which have extremely affinities 

to water or oil are remarkable promising for increasing oil-water separation efficiency.[73, 

74] Until now, two different types of oil-water separation materials with superwettability, 

superhydrophobic/superoleophilic (SHBOI) material and underwater superoleophobic 

(UWSOB) material have been widely designed, fabricated and used in oil-water 

separation (Fig. 1-1). 
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Fig. 1-1 Oil-water separation with SHBOI and UWSOB materials.[5] 

Among this two kinds of separation materials, SHBOI surfaces have received broad 

attention in recent years because they can separate oil-water emulsions or mixtures 

effectively by selective adsorption or permeation.[73] SHBOI polymeric textiles and 

metal meshes can be successfully designed and used for oil-water separation, because 

they can remove the oil selectively by absorption or filtration as membrane. Additionally, 

UWSOB materials can also be used for oil-water separation, because the materials shows 

extremely high water affinity while repelling oil.[70] 

1.2 Wettability of solid surfaces 

Wettability is a very important character of solid surfaces, it has attracted extensive 

attention for a long time, from cave painting in the ancient to microfluidic devices in the 

modern. Several superwettability have been disclosed in Fig. 1-2,[4] including 

superhydrophilic (SHL), superhydrophobic (SHB), superoleophilic (SOL), and 



4 

superoleophobic (SOB). When air is changed to water or oil, several other 

superwettabilities underwater superoleophobic (WSOB), underwater superoleophilic 

(WSOL), underoil superhydrophobic (OSHB), and underoil superhydrophilic (OSHL) 

appear. Among these terms, superhydrophobicity is the most typical example of 

wettability which has been investigated widely. 

 

Fig. 1-2 Several different superwettabilities. Surface wettability on a flat solid surface 

commonly shows four basic states in air (inside inner circle), including hydrophilic 

(HL), hydrophobic (HB), oleophilic (OL), and oleophobic (OB). Their combination will 

generate four possible extreme states in air, that is, superhydrophilic (SHL), 

superhydrophobic (SHB), superoleophilic (SOL), and superoleophobic (SOB). When air 

is changed to water or oil, there are four possible extreme states: underwater 

superoleophobic (WSOB), underwater superoleophilic (WSOL), underoil 

superhydrophobic (OSHB), and underoil superhydrophilic (OSHL).[4] 

Historically, as the father of contact angle (CA) and wettability, Thomas Young first 

described CA in 1804 and 1805.[1] Wenzel explained the contribution of roughness to 
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hydrophobicity in 1936[2] and 1949.[3] In the following half acentury, most efforts 

focused on theoretical studies and analytical techniques.[4,5] In 1997, the self-cleaning 

property of lotus leaves was explained as a result of the microscaled papillae and the 

epicuticular wax by Barthlott and Neinhuis, they provided a monomicrostructure 

model.[6] Following, Jiang and his cooperators found the lotus leaf surface possess micro 

and nanoscaled hierarchical structures, this kind of structure is branch-like nanostructures 

on the top of micropapillae and results in superhydrophobicity.[7] Thus, the origin of 

lotus leaf’s superhydrophobicity become clear, which was explained from a monoscaled 

model of microstructures to a dual-scaled model of hierarchical structures. These 

researches about the lotus leaf activated the field of wettability from surface chemistry, 

biomimetic study, fundamental theory, and material science. In the following decade, a 

mass of surfaces with superwettability have been fabricated, besides superhydrophobic 

surfaces, and have shown promising applications in anti-ice, antibiofouling, self-cleaning, 

antifogging, microfluidic devices oil-water separation, sensor and smart membrane. 

1.2.1 Definition of hydrophobicity and hydrophilicity 

Generally, solid surfaces which possess contact angle CA θ < 90° are defined as 

hydrophilic. The solid surfaces which possess contact angle CA > 90° are defined as 

hydrophobic. The CA limit of 90° between hydrophilicity and hydrophobicity originates 

from Young’s equation:[8] 

SL
SL

S
V

L
S LV

V

Vcos cos
     


  


  

where γSV, γSL, and γLV represent solid-gas, solid-liquid, and liquid-gas interface 

tensions, respectively. θ is the balance CA or the intrinsic CA of the materials and can be 

written as θe. The CA is determined by the interactions across the three interfaces on the 

smooth surface. It is an ideal and simple mathematics and physical model. Here, the solid 

surface should be an ideally smooth surface which is isotropic, homogeneous and 

undeformed. Meanwhile, the water droplet is defined as a mathematic entity which has 
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consistent bulk phase and surface. 

In comparison to hydrophobic and hydrophilic surfaces, there are not many efforts 

devoted to the study of oleophobic and oleophilic surfaces probably because of the 

complexity and diversity of the oil phase. In a pervasive understanding, solid surfaces 

with oil CAs θ < 90° are considered to be oleophilic, and those with oil CAs θ > 90° are 

oleophobic. There remain some difficult conundrums, for example, the influence of 

surface chemical structure of oil droplets, the influence of oil types, surface chemistry, 

and topography of solid materials. 

1.2.2 Definition of superhydrophobicity and superhydrophilicity 

Superhydrophobicity was found by Reick in 1976, he found that the shape of water on 

surface of hydrophobic fumed silicon dioxide particle coatings remained almost spherical 

and the force of adhesion is negligible.The finding of the lotus effect accelerates the wide 

use of superhydrophobicity, especially in the past decade. According to the general 

definition, a superhydrophobic surface has a CA θ > 150°. Surface chemistry and surface 

roughness are two critical factors to obtain the superhydrophobicity. However, the 

maximized CA on the flat surfaces is around 118° that depends on the modification of 

hydrophobic fluoride. The role of surface roughness has been further discussed in the 

following two main models. 

In 1936, to explain the superwettability on rough surfaces, Wenzel modified Young’s 

equation by introducing a factor of surface roughness, r, which is defined as the ratio of 

the actual area of a rough surface to the geometric projected area.[2,3] Assuming θ* to be 

the apparent angle on the rough solid surface, it can be evaluated by considering a small 

displacement dx of the contact line along the parallel direction of the surface. The total 

free energy difference dF can be written as 

dF = r(γSL − γSV) dx + γLV cos θ* 

As F is a minimum, the system will reach a thermodynamic equilibrium. Thus, the 
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equilibrium condition yields Young’s equation when r is equal to 1 and leads to Wenzel’s 

equation for r is larger than 1: 

cos θ* = r cos θe 

As r is always larger than 1, surface roughness will enhance surface wettability. That 

is, (a) when θ < π/2, θ* decreases with the increase of surface roughness and the surface 

becomes more hydrophilic; and (b) when θ > π/2, θ* increases with the increase of surface 

roughness and the surface becomes more hydrophobic. 

In 1944, Cassie and Baxter derived an equation describing CA hysteresis for composite 

smooth surfaces with varying degrees of heterogeneity:[9] 

cos θ* = Σfi cos θi 

where fi is the fractional area of the surface with a CA of θi and Σfi = 1.  

Roughness makes it possible for a droplet to have more than one metastable position 

of equilibrium, and the drop can transfer from one metastable equilibrium to the other, 

provided that the energy barrier can be overcome.  

On the other side, the water contact angle on a superhydrophilic surface should be less 

than 5° or 10°. We believe that a superhydrophilic surface should have a CA of 0°. A 

fresh cleaved mica surface or clean glass is simply naturally hydrophilic, but not 

superhydrophilic, although water seems to spread over them with a CA of a few degrees. 

Superhydrophilicity of CA 0° cannot be realized on flat homogeneous surface, but it can 

be achieved on a heterogeneous surface such as TiO2 surface.[12] Moreover, Drelich and 

Chibowski suggested to refer to surfaces as superhydrophilic surfaces only for structured 

surfaces (rough and/or porous) possessing a roughness factor defined by a Wenzel 

equation larger than 1 (r > 1), on which water spreads completely.[13] Also, it can be 

deducted from the Wenzel equation. Superhydrophilic surfaces cannot be obtained 

without manipulation of surface roughness of hydrophilic materials. 
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1.2.3 Measurements of surfaces with superwettability 

The static contact angle measurement is often used to characterize the superwettability. 

Generally the water droplets of different volume from 2 to 5 μL were used to monitor the 

values of CAs. Importantly, the different fitting modes of the static CA also were used to 

fit the shapes of water droplets on the surfaces, such as ellipse fitting, circle fitting, 

tangent searching, and Laplace Young fitting. These differences always result in different 

observed values of the CAs from around 150° even to 179° with similar shape.[14] For a 

water droplet of 5 μL, the CA is about 156° by using ellipse fitting; however, the CA can 

be more than 179° under the Laplace-Young fitting mode. Therefore, the fitting mode 

should be clearly noted with static CAs to reflect the real situation of solid surface 

wettability. 

When comparing the superhydrophobicity of different surfaces, the CA must be 

measured using a water droplet with the same volume. Because the CA is affected by the 

volume of water droplets and the gravity force, 2 or 3 μL might be a suitable volume 

when measuring CA of water droplet on solid surfaces. However, it is very difficult to 

obtain a water droplet with volume lower than 4 μL, because of the low water adhesion 

of many superhydrophobic surfaces.[15] To reduce the influence of the deformation of 

the water droplet caused by the gravity force, Zhang et al.[14] proposed the new method 

to measure the CAs by using a much smaller water droplet. First, a 5 μL water droplet is 

dropped on a superhydrophobic surface with CA around 154°. The volume of the water 

droplet reached 0.3 μL with a CA of 173° after vaporization for 40 min under ambient 

conditions.[16] 

1.2.4 Nature example with superwettability  

After billions of years of evolution, nature has created countless mysterious livings 

which exhibit excellent functions.[17] To take wettability as an example, people have 

found many functional natural interfacial materials. These findings have brought us many 

excellent methods to design and fabricate functional interfacial materials with 
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superwettability. 

As a symbol of purity in many cultures, the lotus leaf is famous for its low-adhesive 

superhydrophobicity and self-cleaning property. In 1997, W. Barthlott and C. Neihuis 

discovered that the microstructures and wax materials on the lotus leaf surface contribute 

to its self-cleaning properties.[6,19] When a water droplet falls on the lotus leaf, the 

complementary role of micropapillae and hydrophobic wax keeps the droplet with a CA 

of about 160°. This droplet can easily roll off the surface immediately taking away the 

adherent dirt particles, the “lotus effect”. Later, Jiang et al. discovered the synergetic 

effect of micro-nano hierarchical structures on the superhydrophobic lotus leaf.[7] 

Hierarchical structures in the form of branch-like nanostructures on each papilla are 

observed. These multiscale structures effectively prevent the underside of pallillae from 

being wetted.  

 

Fig. 1-3 Typical biological materials with superwettability and corresponding multiscale 

structures. Lotus leaves demonstrate low adhesive, superhydrophobic, and self-cleaning 

properties, due to randomly distributed micropapillae covered by branch-like 

nanostructures.[7] 

Water strider is famous for its ability of walking freely on the surface of ponds, marshes, 

and slow streams. Previous investigators thought that the water strider’s leg was 

hydrophobic and its weight was supported by the surface tension generated by the 

curvature of the free surface. The hydrodynamic propulsion of the water strider was 

assumed to rely on momentum transfer by surface waves. This assumption results in 

Denny’s paradox: the infant water strider, whose legs are too slow to generate waves, 
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should be impossible to propel itself along the water surface. In 2003, Bush et al. resolved 

this paradox,[20] and captured the walking process of different insects on the water 

surface. Their results indicated that capillary waves do not play a critical role in the 

propulsion of the strider. The strider transferred momentum to the underlying fluid mainly 

through hemispherical vortices shed by its hairy driving legs. In 2004, Jiang et al. further 

revealed that the secret of water strider standing effortlessly on the water surface lies in 

the huge superhydrophobic force of its legs.[21] It is remarkable that the leg does not 

pierce the water surface until a dimple of ca. 4 mm depth is formed. This robust and 

durable repellency force from just one leg is enough to support 15 times the total body 

weight of the water strider. Therefore, the water strider can move freely on the water 

surface even in a violent storm or torrent.  

 

Fig. 1-4 Typical biological materials with superwettability and corresponding multiscale 

structures. Non-wetting leg of a water strider. Typical side view of a maximal-depth 

dimple just before the leg pierces the water surface. Scanning electron microscope 

images of a leg showing numerous oriented spindly microsetae.[21] 

Fish scales exhibit a self-cleaning property underwater, in addition to the drag-reducing 

function.[26] Jiang et al. revealed that fish scales (Crucian Carp, Carassius carassius) have 

superoleophilicity in air and superoleophobicity underwater.[26] Fish scales are usually 

covered by a thin layer of mucus, which results in their hydrophilic nature. The fan-

shaped fish scales with oriented micropapillae have diameters of 4-5 mm, they are densely 

arranged on fish body. Each micropapillea has a length of 100-300 μm and a width of 30-

40 μm. Surface with micropapillae can be observed nanoscale roughness. These 
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multiscale structures absorb water and form a water-solid interface which would repell 

oil, this may be the most important reason of the underwater superoleophobicity of fish 

scales.[18,27] 

 

 

 

 

Fig. 1-5 Typical biological materials with superwettability and corresponding multiscale 

structures. Fish scales present drag reduction, superoleophilicity in air, and 

superoleophobicity in water due to oriented micropapillae covered by 

nanostructures.[26] 

1.3 Fabrication of SHBOI materials 

Recently, more attention has been paid to the control of surface wettability by 

mimicking the structures of creature surface, the fabrication of SHBOI materials, and 

extending their potential functional applications in diverse fields. Chemical composition 

and surface roughness are the two main factors to govern surface wettability. According 

to biological inspiration (e.g., lotus effect) and the previous bionic research results, there 

are two ways to prepare SHBOI materials: one is to roughen the surface of low-surface-

energy materials, that is, hydrophobic materials, and the other is to modify the rough 

surface with low-surface-energy materials. Clearly, it is focused on the effective 

construction of rough surface structures and low-surface-energy coating modification to 

prepare superhydrophobic surfaces. Many methods including physical, chemical, and the 

combination of physical and chemical methods have currently been developed to obtain 

superhydrophobic surfaces in a simple and environment-friendly way. Herein, I will 

summarize the progress in the preparation of SHBOI materials and their related functions. 
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1.3.1 Vapor deposition methods 

Vapor deposition methods including CVD and PVD can produce perfectly aligned 

nanostructures with controlled height and diameter. For example, Jiang et al. have 

prepared various kinds of ACNTs films on quartz-glass substrates by the method of 

CVD[29,30] such as honeycomb-like, island-like, and postlike. The prepared films 

behave superhydrophobic with CA higher than 160° and SA lower than 5° due to the 

micro-nanostructure arrays of the surface. 

Since then, superhydrophobic transparent films with nanostructures were prepared by 

microwave plasma-enhanced CVD on glass, silicon, and PMMA substrates, respectively, 

by employing TMMOS (CH3)3Si(OCH3)) as starting materials.[34,35] Furthermore, the 

mechanical properties and optical transparence of the films were improved using CO2 as 

an additive gas instead of Ar through the combination of microwave plasma-enhanced 

CVD and oxygen-plasma treatment. 

A single-step PVD has also been used to fabricate superhydrophobic surfaces. Miller 

et al. prepared PTFE thin films with nanoasperities by a vacuum-deposited method, 

exhibiting the superhydrophobic property with a CA of ∼150°.[35] Moreover, Amirfazli 

et al. reported a SHBOI material with robust chemical stability from the low surface 

energy of n-hexatriacontane together with therandomly distributed micro-

nanostructures.[36] 

1.3.2 Spraying methods 

The spraying deposition is one of the most well-developed approaches for painting, 

graphicarts, and industrial coating.[37-41] Zhang et al. fabricated a SHBOI coating 

through spraying ethanol dispersion of metal alkylcarboxylate on any substrate.[42] This 

dispersion was prepared through the reaction of metal salt and alkylcarboxyl acid in an 

ethanol solution. The resultant coating with flower-like hierarchical structures exhibited 

a stable superrepellent behavior for several oil liquids. Using the spraying process, they 
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also fabricated the superhydrophobic perfluorooctanoic acid-modified TiO2-polystyrene 

nanocomposites coatings[38] and superhydrophobic CNT nanocomposite films.[42] 

Recently, Park et al. spin-coated a SHBOI surface used a new-developed copolymer. The 

polymer material is transparent, easy to prepare, low cost, simple and applicable to rough 

substrates.[43] This process is applicable for a variety of substrates and is not limited to 

small areas and flat substrates. The superhydrophobicity of those coatings can be easily 

repaired by spraying the dispersion again when the coating surfaces are damaged by using 

the cheap coating materials at any time and almost anywhere. 

1.3.3 Layer-by-Layer methods 

The layer-by-layer (LbL) technique is easy and wide to tune various micro-

nanostructures and fabricate SHBOI materials by electrostatic interactions between the 

different layers such as polyanion and polycation. Shiratori et al. have presented a SHBOI 

film by the LBL technique.[44] They assembled a polyelectrolyte multilayer containing 

SiO2 nanoparticles, and then created a suitable surface morphology for 

superhydrophobicity by heating the multilayer film to 650 °C. 

However, hydrophobic modification is a necessary step in most fabrication processes 

of superhydrophobic coating via the LBL technique. For example, Rubner et al. prepared 

a honeycomb-like PAH/PAA multilayer film by the LBL technique, subsequently coated 

it with silica nanoparticles, and finally modified with semifluorinated silane by CVD.[45] 

The honeycomb-like structure was fabricated by the suitable acid treatment of 

polyelectrolyte multilayer films. A single acid treatment produced small pores with 

diameter of 0.5-2 μm. In comparison, a combined acid treatment led to big pores with a 

diameter of 10 μm. Thus, they obtained stable superhydrophobic multilayer coating.  

The LBL technique can feasibly combine with other techniques together to control 

surface structures. Zhang et al.[46] fabricated gold-cluster-covered polyelectrolyte 

multilayer films on indium tin oxide (ITO) by a combination of LBL technique and 

electrochemical deposition. The film behaved as a stable SHBOI material after further 
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modification of n-dodecanethiol. The CAs increased gradually with the electrochemical 

deposition time. 

1.4 Fabrication of UWSOB mterials 

UWSOB materials appeared as an opposite term to SHBOI materials. A general 

definition of superhydrophilic surfaces is the surfaces with CAs close to 0°. Similar to the 

SHBOI materials, surface roughness is a necessary feature of superhydrophilic surfaces, 

according to the basic principle developed by Wenzel[2] and Cassie and Baxter.[4] For a 

hydrophilic rough surface, the water can fill in the troughs on the rough surface, resulting 

in the decrease of apparent CA even to 0° (a superhydrophilic state). Although most 

efforts have been focused on the fabrication of UWSOB materials, the superhydrophilic 

surfaces have also received much attention because of their wide practical applications, 

such as antifogging, antifouling, and self-cleaning. Here, I briefly introduce the recent 

progress in the fabrication of superhydrophilic surfaces. 

In general, any kind of solid surface could be treated to superhydrophilic by chemical 

and physical approaches. One common approach is to coat hydrophilic inorganic meso- 

or nanoparticles onto solid surfaces. Because of the attractive self-cleaning capability, 

titanium oxide[48] and zinc oxide[49] are most studied among inorganic materials 

because of their photoinduced superhydrophilicity. Moreover, silica nanocoating[48] is 

well studied due to its highly hydrophilicity and easy availability. Nanoparticles have 

been coated onto substrates through various methods such as inkjet printing,[50] spin 

coating,[51] sputtering,[49] sol-gel techniques,[48] solution growth,[52] lithographic 

techniques,[53] and electrochemical deposition.[54] On the other hand, hydrophilic 

polymers act as a big group of coating materials for superhydrophilic surfaces. To make 

the hydrophilic polymer surface rough or to conjugate hydrophilic group onto rough 

polymer surface are the two main ways make polymer superhydrophilic. Many techniques, 

such as ion irradiation,[55] electron beam,[56] and plasma treatment,[57] have been 

widely used to improve the hydrophilicity of polymer surfaces. 
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It must be pointed out that several kinds of surfaces aroused much attention because of 

their capability to go from superhydrophobic to superhydrophilic states responding to 

external stimuli. For example, UV and ozone treatment made carbon nanotube films 

transform from superhydrophobic to superhydrophilic, and heating in a vacuum 

recovered the films.[59] Zhang et al.[60] showed that the superhydrophilic micro-

nanostructured nylon6,6 surface can be reversed to superhydrophobic after treatment with 

formic acid and ethanol. A reversible switch between superhydrophilicity and 

superhydrophobicity was tuned by controlling the adsorption- desorption process of n-

dodecanethiol associated with the lightinduced silver nanoparticles on WO3 

nanostructured film.[61] 

1.5 Application in oil-water separation 

Separation of water and oil mixture is considered a worldwide challenge due to 

frequent oil spill accidents and the increasing industrial oily wastewater. For example, the 

flood of oil in the Gulf of Mexico in 2010 is one of the most serious pollution accidents 

of the last decades. Recently, functional surfaces integrated with both 

superhydrophobicity and superoleophilicity were proved to be effective in the separation 

of oil and water mixture. Utilizing different synthesis strategies, a series of SHBOI and 

UWSOB materials (such as metal mesh, carbon nanotube sponge, polymer film, etc.) 

have been fabricated and used in oil and water mixture separation, which provide an 

important avenue for the development of advanced separation techniques. 

1.5.1 Oil-water separation with SHBOI materials 

Copper meshes and stainless-steel meshes, these kinds of metal meshes made of 

connected metal strands are used as pore-structured metal membrane. These metal meshes 

surfaces can be modified into superhydrophobic-superoleophilic. And then, due to the 

superwettability and pore-structure of meshes, they can be used into oil-water separation. 

Jiang and his cooperators firstly created the oil-water separation by materials with 
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superwettability, meanwhile they developed a series of SHBOI materials used for oil-

water separation.[73] In 2004, they created an easy, low cost and facile spray-and-dry 

method to fabricate superhydrophobic and superoleophilic metal meshes used for oil-

water separation.[73] Briefly, they prepared a homogeneous polytetrafluoroethylene 

(PTFE) emulsion which was a low surface energy material. Following, they used water 

and polyvinyl acetate which was a anionic surfactant sodium dodecyl benzene sulfonate, 

to fabricate a spay adhesive and then spay onto stainless-steel-mesh substrates. Then the 

spayed substrates were dried to evaporate water. Finally, the surfactant which was used 

as an adhesive obtained a PTFE backbone rough surface with micro-nanostructure. The 

contact angle CA of water on this surface was measured, it showed a result of 

superhydrophobicity, more than 150°. However, the contact angle CA of oil was about 0° 

which showed a superoleophilicity. These phenomenons were due to the nano-microscale 

hierarchical roughness structures combined with the hydrophobic chemical composition 

of the metal meshes. Because of the superhydrophobicity and superoleophilicity, the 

modified meshes allowed oil permeating but did not allow spreading and passing through 

the mesh. As a result, the oil-water mixtures were effectively separated, the oil-water 

separation by SHBOI material was realized. 

Wang and his cooperators[77] created a novel electrospinning method to fabricate the 

SHBOI materials with a bead-on-string morphology from thermoplastic polyurethane 

(TPU). Briefly, TPU was added into the mixture of N,N-dimethylformamide and 

tetrahydrofuran to create a solution, then, this solution was electrospun onto a copper-

mesh substrate. This electrospun TPU bead-on-string was hydrophobic, however, after 

the treatment through hydrophobic silica nanoparticles prepared by heating nano-silica at 

reflux in toluene in the presence of hexadecyltrimethoxysilane, the modified meshes 

realized superhydrophobicity and superoleophilicity. Finally, the prepared SHBOI TPU 

modified copper meshes was used into oil-water separation and showed a high efficiency. 

On the other hand, Wang and Guo and their cooperators used a pH responsive material 
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to modify copper meshes and they obtained a superhydrophobic mesh film.[78] Then, the 

modified meshes were used into oil-water separation successfully. Biriefly, a thin layer 

of gold was sputter-coated onto a copper mesh using a facile electrochemical deposition 

method, then the gold coated mesh got a roughness structure. Following, a mixture of 

decane-1-thiol and 11-mercaptoundecanoic acid was used to modified the surface of gold 

coated copper mesh, the mixture possessed a pH-sensitive carboxylic group at one end 

and a thiol group at the other. A thiol-gold complex formed on the gold surface by 

bonding with the two thiols. Changing pH value of medium environment can control the 

carboxylic groups’ deprotonation and protonation, therefore, the modified copper mesh 

surface became a pH-switchable surface, the wettability of the surface can be controlled 

by the pH value of environment. Meanwhile, the mesh can be successfully used in oil-

water separation. They poured an acidic water solution and oil into the upper bottle, the 

modified mesh allowed the oil pass through and went down to the bottom bottle, but did 

not allow the water pass through. On the other hand, when they poured a alkaline water 

solution and oil into the upper bottle, the modified mesh allowed water pass through but 

not water. 

Seeger and Zhang[79] and their cooperators created the novel oil-water separation used 

SHBOI textiles firstly, they developed an easy one-step chemical vapor deposition 

method with trichloromethylsilane.[80-82] They used the polyester fabric as a substrate 

and a dense layer of silicone nanofilaments observed by SEM measurement was coated 

on the substrate. This chemical vapor deposition coating has changed the wettability of 

the substrate. [79, 80-83] When the substrate was not coated by silicone nanofilaments, it 

can be wetted by both oil and water, however, when the substrate was coated by silicone 

nanofilaments it can be wetted by oil but not water, it showed superhydrophobicity and 

superoleophilicity simultaneously. Finally, this modified substrate was used for oil-water 

separation, the substrate was flexible, superhydrophobic and superoleophilic, meanwhile, 

it showed high separation efficiency and remarkable reusable.  



18 

In latest studies,[84, 85] researchers devoted to fabricate robust and more durable 

superhydrophobic materials for oil-water separations by simple and facile methods. This 

kind of materials allowed oil pass through or absorb but did not allow water pass through. 

1.5.2 Oil-water separation with UWSOB materials 

UWSOB materials achieved from combining roughness structure and low surface 

energy substance can also be used in oil-water separation. A novel UWSOB 

polyacrylamide-hydrogel modified metal mesh has been proposed by Feng and his 

cooperators[70]. With this excellent material, water can be separated from oil-water 

mixtures effectively and selectively because of its water absorption, such as the mixture 

of water and diesel, crude oil, vegetable oil, gasoline. What is more, this kind of surface 

cannot be contaminated by oils thus presented a disaffinity for oil droplets, which 

capacitates the material to realize a high recyclability for repeated separation. As this new 

material successfully eliminates the weakness of being polluted and hard to be reusable 

that usually happened in using SHBOI materials, it shows a promising property for 

applying to the oil spills cleaning up and oil polluted water treatment. In latest researches, 

a stainless-steel mesh was created by depcositing the sodium silicate and TiO2 

nanoparticles on it, then, it became a self-cleaning UWSOB mesh and can be applied in 

oil-water separation.[75] With ultraviolet illumination, those TiO2 nanoparticles can 

make the contaminants removed conveniently and easily from the mesh and then the 

pacific recovery ability was achieved. Intelligent surfaces have an ability to change 

wettability between superoleophilicity and superoleophobicity, we can produce them by 

utilizing common materials.[76] Through grafting a block copolymer onto those 

substrates, the intelligent coatings were generated. With protonation and deprotonation, 

the contained blocks of pH-responsive poly(2-vinylpyridine) (PVP) and oleophilic-

hydrophobic polydimethylsiloxane can change its characteristics, such as their wettability 

and conformation, through changing the value of pH of the aqueous medium, for the 

purpose to achieve the switchable oil wettability under water. Such materials are also 
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replaceable to the highly controllable oil-water separation as mentioned by the 

researchers. 

In recent years, UWSOB materials were often used to separate oil-water emulsions 

successfully. For example, UWSOB materials can be fabricated to a separation film, and 

the water was allowed to pass through but the oil was remained in upper bottle. 

Meanwhile, the separation film made by UWSOB materials showed high separation 

efficiency. Under the driven of gravity force, the UWSOB separation film separated the 

oil-water emulsion efficiently and showed high water flow rate. 

1.6 Purpose of this research 

The application of superwetting materials in oil-water separation has been limited 

because the complex fabricating process, fragile roughness structure, easy to be polluted 

and lose efficacy. Therefore, this study has aimed on developing simple and versatile 

strategies to fabricate simple and robust oil-water separation devices with 

superwettability. 

In Chapter 1, the research backgrounds, fundamental understandings of 

superwettability, research significance and research purpose were particularly described. 

In Chapter 2, the experimental section was presented. The experimental materials, 

methods and characterizations were particularly described in this chapter. 

In Chapter 3, I have developed a facile method for fabricating underwater low adhesive 

hydrogel-coated functionally integrated device to separate oil from mixtures with water. 

The wettability of device surface before and after modification was studied and the oil-

water separation efficiency was also investigated. The results showed that the device has 

realized the effective separation of oil-water mixtures and can be reused. What is more, 

it also can be used for selective removal of little water from oil surface by means of a 

magnetic field. 



20 

In Chapter 4, I have developed a versatile and simple strategy to fabricate robust, self-

cleaning and superhydrophobic surfaces for both soft and hard substrates by a 

straightforward spraying method. The wettability of substrate surface before and after 

modification was studied. The results showed that the superhydrophobic surface was 

successfully fabricated through the method. Meanwhile, the superhydrophobic surface 

showed remarkable robustness against knife scratch and sandpaper abrasion. Further, it 

could be used for oil-water separation as well as showed excellent separation efficiency 

and reusability. 

In Chapter 5, I have developed a facile way to make robust, transparent and 

superhydrophobic surface. Candle soot was used as rough surface template and then the 

roughness structure was reinforced through chemical vapor deposition. Further, the 

surface was used for oil-water separation. The results revealed that the robust, transparent 

and superhydrophobic surface was successfully fabricated and showed excellent 

separation efficiency and reusability in oil-water separation. 

In chapter 6, general conclusions of the research were made.  

Finally, the overall structure of the present research was shown in Fig. 1-6. 
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Fig. 1-6 The overall structure of the present research 
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Chapter 2 Materials, Experiment and 

Characterizations 

2.1 Materials 

2.1.1 Fabrication of the underwater low adhesive hydrogel-coated surface and its 

applications 

Oil Blue 35 (Askul Co., Ltd., Japan), canola oil (Nisshin Oillio Co., Ltd., Japan), nickel 

foam (Anping Huirui Wire Mesh Manufacture Co., Ltd., China). Toluene, 

dichloromethane, n-hexane, alcohol, acrylamide (C3H5NO, 97%), N,N’-

methylenebisacrylamide (C7H10N2O2), ammonium persulfate (H8N2O8S2) and 

N,N,N’,N’-tetramethylethylenediamine (C6H16N2) were purchased from Nacalai tesque 

and Alfa Aesar, used as received. 

2.1.2 Fabrication of the robust and superhydrophobic surface and its applications 

Calcium carbonate nanoparticles with 80 nm in diameter (Shiraishikogyo Co., Ltd., 

Japan), Oil blue 35 (Askful Co., Ltd., Japan), Scarlet 4GE (Askful Co., Ltd., Japan), 3M 

spray adhesive 55 (Sumitomo3M Co., Ltd., Japan), gasoline (Komeri Co., Ltd., Japan), 

sandpaper (standard glasspaper, Grit No. 150, Marumotostruers Co., Ltd., Japan),  

stainless steel mesh (Anpinghuirui wire mesh Co., Ltd, China). 1H, 1H, 2H, 2H-

perfluorooctyltriethoxysilane (C8F13H4Si(OCH2CH3)3) were purchased from Sigma-

Aldrich, laboratory solvents were obtained from Nacalai tesque. All chemicals were 

analytical grade reagents and were used as received. 

2.1.3 Fabrication of the robust, transparent and superhydrophobic surface and its 

applications 

Candle (Kameyama Co.,Ltd., Japan), Oil blue 35 (Askful Co., Ltd., Japan), Scarlet 

4GE (Askful Co., Ltd., Japan), gasoline (Komeri Co., Ltd., Japan), stainless steel mesh 

(Anpinghuirui wire mesh Co., Ltd, China) and sea sand. Trichloro(1H, 1H, 2H, 2H-

perfluorooctyl)silane was purchased from Sigma-Aldrich, laboratory solvents and 
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silicon tetrachloride were obtained from Nacalai tesque. All chemicals were analytical 

grade reagents and were used as received. 

2.2 Experimental methods 

2.2.1 Fabrication of the underwater low adhesive hydrogel-coated surface and its 

applications 

a) Fabrication of the surface. The nickel foam was folded into an open and rectangular 

box with an edge length of 3 cm×3 cm×1 cm. The as-prepared box was ultrasonicated in 

ethanol and deionised water for three times, and dried in oven.  

A mixed aqueous solution were prepared by adding acrylamide (35 mmol), N, N'-

Methylenebisacrylamide (0.2 mmol), ammonium persulfate (0.1 mmol) and N,N,N',N'-

Tetramethylethylenediamine (10 μl) in order. And then, the as-prepared box was 

immersed into the mixture aqueous solution for 5 min. Finally, it was taken out and rinsed 

three times by deionised water. 

b) Separation of dichloromethane from oil–water mixture. In order to distinguish 

dichloromethane from oil–water mixture, we dyed the layer with Oil Blue 35 to indicate 

the directional delivery. The labeled dichloromethane (5 mL) and 5 mL of water were 

added into a beaker forming the oil–water mixture solution. After the as-prepared device 

put on the top of the supporting beaker, water was allowed to penetrate the surface rapidly 

while dyed dichloromethane was prevented. Then the dichloromethane was collected and 

measured its volume.  

c) Magnetically driven floating device for the removal of little water from oil. The 

system was constructed by adding water, whose density is lighter than dichloromethane, 

at different places on the surface of watch glass. We dyed the water to a blue color, to 

distinguish the dichloromethane from water. Afterwards, the as-prepared device was 

placed on the surface of the system, which floated due to its underwater 

superoleophobicity. By employing an external magnetic field, the as-prepared device can 
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be driven and directionally clean up dyed water. 

2.2.2 Fabrication of the robust and superhydrophobic surface and its applications 

a) Fabrication of the surface. 500 mg of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane 

was placed into 49.5 g of absolute ethanol, and the solution was magnetically stirred for 

0.5 h. To the resulting solution, 6 g of calcium carbonate were added and stirred for 3 h 

to make a paint-like suspension. In the following experiments, spray adhesive was used 

to promote the robustness of the painted superhydrophobic coatings. For all kinds of 

substrates, adhesive was directly coated onto the abluent surfaces, and then the “substrates 

+ adhesive” surface was treated with the paint by spay-coating, the paint was dried in air 

for at least 10min before testing. 

b) Superhydrophobicity test in air and oil. The superhydrophobic paint treated surfaces 

on glass slide, PTFE pad, wood, aluminium sheet, stainless steel mesh, paper and gauze 

substrates were tested in air. Water droplets were dropped from a height of 10 mm (tip to 

surface) using a dropper fitted with a 3 ml dimension. The water droplets were around 

19.7± 0.2 μL in size and were left to detach under their own weight. Scarlet 4GE was 

added to the water to aid visualization; this did not change the behavior of the water 

droplets on the surface. The superhydrophobicity test in oil (hexane) was similar as those 

in air. A spray-coated glass slide was immersed in oil, and then water was dropped onto 

the surface to test the superhydrophobicity in oil. 

c) Self-cleaning test immersed in oil. The glass slide sample after superhydrophibicity 

test was following used to measurement the self-cleaning property immersed in oil. Soil 

and dust was used as dirt and placed onto the painted surface, water was then dropped 

onto the surface to remove dirt from the surface under oil immersion. 

d) Robustness test. Both hard (glass slide, PTFE pad, wood, aluminium sheet and 

stainless steel mesh) and soft (gauze and paper) substrates were involved in the robustness 

tests, such as knife-scratch and sandpaper abrasion. For knife-scratch tests, water was 

firstly dropped on painted surfaces to test the wettability, and then a knife (box cutter) 
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was used to scratched the “paint + adhesive” treated surfaces along a meshy path, 

followed by the water dropping test to confirm the robustness of the superhydrophobic 

surfaces.   

To further demonstrate the robustness, a glass slide sample was tested via sandpaper-

abrasion method. The “paint + adhesive” treated surface was placed facedown to the 

sandpaper. This surface was longitudinally and transversely (10 cm for each direction) 

abraded by the sandpaper under a weight at 100 g, respectively, this process is defined as 

1 cycle. 30 cycles of mechanical abrasion tests were carried out on the glass slide sample, 

and water contact angles were measured after each cycle’s abrasion test.  

e) Separation of oil phase from oil-water mixture. In order to investigate the oil-water 

separation application of the painted surface, dichloromethane-water mixture was used as 

a representative to distinguish the oil phase. We dyed the oil layer with Solvent Blue 35 

and water layer with Scarlet 4GE to indicate the directional flowage. An oil-water mixture 

was formed by adding blue dichloromethane (5 mL) and red water (5 mL) into a graduated 

cylinder. Meanwhile, a rounded painted stainless steel mesh was placed between a split 

type funnel formed an oil-water separation device, and then the device was placed on the 

top of a flask. Following, the dichloromethane-water mixture was poured rapidly into the 

device, dichloromethane was allowed to penetrated through the painted mesh while water 

was prevented. Finally, the oil phase in graduated cylinder was measured its water content 

to study oil-water separation efficiency of the device. 

2.2.3 Fabrication of the robust, transparent and superhydrophobic surface and its 

applications 

a) Fabrication of the surface. In order to obtain a robust, transparent and 

superhydrophobic surface in the end, firstly, a quartz wafer was washed by dry 

ethanol/ethanol–deionized water (v/v 1:1)/deionized water sequentially for 15 min each 

time, following a drying process in an oven at 60°C. Then, the abluent wafer was held in 

the flame of a candle until a candle soot layer a few micrometers thick was deposited. 

Subsequently, the soot coated substrate was placed in a desiccator together with an open 
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glass dish containing about 1ml of SiCl4. The desiccator was closed again and chemical 

vapor deposition of SiCl4 was carried out for 2 h. Similar to a Stöber reaction, a silica 

shell was formed as a coating on candle soot by hydrolysis and condensation of SiCl4. 

Consequently, the quartz wafer coated by candle soot and silica shell was calcinated in 

air at 600°C for 30 min, candle soot composed of carbon polymer thermally degraded and 

diffused through the silica coating and a hollow and superhydrophilic silica shell was 

obtained on the quartz wafer. To transform it into superhydrophobic, the silica shell coated 

substrate with abundant hydroxyl was performed chemical vapor deposition in a 

desiccator together with an open glass dish containing about 1ml of Trichloro(1H, 1H, 

2H, 2H-perfluorooctyl)silane, stable oxane bonds between silane and silica shell formed 

by left for 2h at 60°C, the silica shell finally achieved superhydrophobicity. 

b) Robustness tests. For the robustness tests, sea sands grained 300 to 500 um in diameter 

were used to impact the surface from a height of 40 cm, while the substrate was held at 

30° to the horizontal surface. After a certain time of impact, the silica shell coated 

substrate was observed and contact angle was performed on the surface. 

c) Oil-water separation. In order to investigate the oil-water separation application of 

the painted surface, dichloromethane-water mixture was used as a representative to 

distinguish the oil phase. We dyed the oil layer with Solvent Blue 35 and water layer with 

Scarlet 4GE to indicate the directional flowage. An oil-water mixture was formed by 

adding blue dichloromethane (5 mL) and red water (5 mL) into a graduated cylinder. 

Meanwhile, a rounded painted stainless steel mesh was placed between a split type funnel 

formed an oil-water separation device, and then the device was placed on the top of a 

flask. Following, the dichloromethane-water mixture was poured rapidly into the device, 

dichloromethane was allowed to penetrated through the painted mesh while water was 

prevented. Finally, the oil phase in graduated cylinder was measured its water content to 

study oil-water separation efficiency of the device. 

2.3 Characterizations 
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2.3.1 Surface modification 

Morphology of the surfaces before and after modification was observed using a 

scanning electron microscope (S-4300, Hitachi Co., Ltd., Tokyo, Japan) at 20.0 kV. 

Photographic images were taken with a Nikon camera (D5000). The CA was 

characterized on the OCA20 instrument (Data Physics Instruments Gmbh, Filderstadt). 

2.3.2 Oil-water separation 

The oil contents in water was measured by a total organic carbon analyzer (TOC-V 

CPH, Shimazu Co., Ltd., Tokyo, Japan). Moistures in solvents were analyzed by Karl 

Fischer Moisture Titrator (MKC-610 Kyotoelectronics Manufacturing Co. LTD., Japan). 
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Chapter 3 Underwater Low Adhesive 

Hydrogel-Coated Functionally Integrated 

Device by a One-Step Solution-Immersion 

Method for Oil–Water Separation 

3.1 Introduction 

In recent years, the frequent occurrence of oil spills has been a serious threat to marine 

and aquatic ecosystems. The environmental and economic demands also emphasize the 

need for materials which can effectively separate oil and water. In order to handle these 

environmental issues caused by oil spills, many kinds of oil–water separation methods 

have been developed to recover spilt oil from marine environments, such as physical 

diffusion, bioremediation, oil skimmers and so on [1-3]. Owing to the difference in 

interfacial effects for oil and water, utilizing the wetting behavior of solid surfaces to 

design oil–water separating materials has attracted a great deal of attention in fundamental 

research and for potential application in the field of oil–water separation. In the first report 

in 2004, Jiang and coworkers fabricated a superhydrophobic mesh for separation of oil 

and water [4]. Meanwhile, a series of oil–water separating materials with both 

superhydrophobic and superoleophilic properties have been fabricated via various 

methods [5-11].  

However, conventional oil-water separation processes with superhydrophobic-

superoleophilic materials are easily fouled, blocked up and even damaged by oils because 

of their intrinsic oleophilicity, resulting in a quick decrease in separation efficiency, flow 

rate, and film life, and even secondary pollution. These disadvantages have seriously 

restricted their practical application in oil-water separation. To solve these problems, a 

new strategy must urgently be found. Inspired by the underwater superoleophobicity of 

fish scales, several additional superhydrophilic-superoleophobic materials have been 

proposed [12-18] for oil-water separation. Compared with conventional 
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superhydrophobic-superoleophilic oil-water separation materials, these superhydrophilic 

and underwater superoleophobic materials [19-21] can allow water in filtration but 

prevent oil penetration and may solve oil fouling during the separating process very well. 

Despite much progress in this field, some of these superhydrophilic and underwater 

superoleophobic materials with micro-nano structures are easily destroyed under severe 

environmental conditions, thus resulting in the reduction of flow rate and film life. 

Meanwhile, some of these fabrication processes are usually time-consuming which may 

have limited their practical application and their production on a large scale. 

The best strategy for the facile and simple method is to introduce hydrogel coating on 

the material surface and then realize the separation of oil-water mixtures. Jiang and 

coworkers designed and fabricated a novel superhydrophilic and underwater 

superoleophobic polyacrylamide (PAM) hydrogel-coated mesh and then successfully 

applied it to the separation of oil-water mixtures [15]. Because most superhydrophilic 

materials can only collect water on the oil surface, it is urgent for a device to be designed 

and produced which will enable the targeted recovery of water. The best strategy for the 

directional locomotion of an object on the oil surface is to introduce magnetically 

responsive materials into the system and then apply a magnetic field to drive the object 

to the targeted position. In the presence of an external magnetic field, this device can 

easily remove water droplets located at different places. To the best of our knowledge, 

there are few reports about the fabrication of functionally integrated device consisting of 

superhydrophilic and underwater superoleophobic coating to clean up and collect oil 

spills. Therefore, in this chapter, I have developed a facile and simple strategy to prepare 

a low-adhesive and hydrogel-coated functionally integrated device on magnetic nickel 

foam for highly efficient oil-water separation. For the asprepared device, the 

superhydrophilicity and underwater superoleophobicity of the hydrogel coating just 

allowed the water layer to in filtrate while the oil layer was prevented from passing 

through. In this way, the device could selectively and efficiently separate oil from a 
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variety of oil-water mixtures without external power. What is more, the as-prepared 

device can selectively absorb water droplet from the oil interface. In the presence of an 

external magnetic field, the as-prepared device can easily remove water droplets located 

at different places, remove and collect the little water into the interior of the device, 

exhibiting a directionality and selectivity. This novel method may provide a facile and 

simple strategy for separating complex oil-water mixtures in oil spill accidents. 

3.2 Experimental 

In this chapter, the commercially available nickel foams were functionalized by means 

of hydrogel coating with one-step solution-immersion method. By taking advantage of 

the superhydrophilic and underwater superoleophobic properties, the device was used to 

separate oil-water mixtures. The separation efficiency and reusability were investigated. 

What is more, because of the magnetic property of nickel foam, water absorbing on oil 

surface from a distance toward the targeted areas was tested. 

3.3 Results and discussion 

3.3.1 SEM analysis 

Scanning electron microscope (SEM) images were used to evaluate the surface 

morphology of underwater low adhesive hydrogel-coated functionally integrated device 

both before and after modification. Fig. 3-1a showed a typical SEM image of nickel foam 

surface, the average diameter of pores was around 300 μm. Fig. 3-1b indicated a large-

area of staggered holes covered with a thick and compact hydrogel layer, forming the 

superhydrophilic surface. The surface elements were detected by energy dispersive xray 

spectrom (EDX) before and after modification. From the corresponding EDX patterns, 

Ni element appeared and showed a stronger absorption in Fig. 3-1c, while as Fig. 3-1d 

showed, we can clearly observe the stronger signals of C, O, N after modification by 

hydrogel, which confirmed the presence of the PAM hydrogel layer. 
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Fig. 3-1 SEM images of the nickel foam (a) before and (b) after modification by PAM 

hydrogel; the corresponding EDX patterns for (c) bare nickel foam and (d) modification 

by PAM hydrogel. 

3.3.2 CA analysis 

Surface morphology and chemical composition are two important factors which 

significantly affect the wettability of a solid surface. The chemical composition 

determines whether the surface is hydrophilic or not, while the morphological structure 

will amplify this surface property to superhydrophilicity or superhydrophobicity. 

Hydrogel with excellent water-absorbing and water-retaining capacities is one of the most 

typical hydrophilic materials and is considered to be promising candidate for designing 

novel water-removing materials for oil/water mixtures separation. I have developed a 

facile method for fabricating underwater low adhesive hydrogel-coated functionally 

integrated device. The CA measurement results showed that the water droplet CA on bare 

nickel foam surface was less than 90o, indicated the hydrophilicity of surface, as shown 

in Fig. 3-2b. Obviously, a water droplet standing on the surface of nickel foam and cannot 

penetrate through spontaneously because of the negative capillary effect. However, the 

water droplet easily spreaded and penetrated the surface when it is in contact with the 
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surface coated by hydrogel, and the water droplet dropped down when more water was 

added. The surface was hydrophilic, with CA about 0o (Fig. 3-2a). So these phenomena 

indicated that superhydrophilicity had generated on the nickel foam surface after 

modification by hydrogel. 

 

Fig. 3-2 CA and photographs of water droplets on different surfaces: (a) PAM hydrogel 

coated nickel foam and (b) bare nickel foam 

  It is well-known that superhydrophobic surface originate from the special formation 

of a water/air/solid system. According to the theory developed by Cassie et al. [22], stable 

air molecules exist on the surface of micro/nanostructures, forming a water/air/soild 

interface. This strategy will help us study the wetting behavior in the oil/water/soild 

system. When hydrogel coated on nickel foam contacted with the oil/water mixture, water 

molecules were trapped in the hydrogel coating, forming an oil/water/solid interface. This 

new composite interface showed superhydrophilic and underwater superoleophobic 

properties. To verify the surface wettability and low adhesive property underwater, the oil 

droplets were applied to the as-prepared hydrogel-coated functionally integrated device 

underwater. From Fig. 3-3a we can observe that a round oil droplet formed on the surface 

of the as-prepared device with an oil contact angle (OCA) of 150.1o, which indicated the 

underwater superoleophobicity of the surface. With slowly moving the injection syringe, 

we can take notice of the paralleled movement of the oil droplet without any residual oil 
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droplet on the surface. The shape of the oil droplet was spherical during the whole 

movement, which indicated the surface had a low adhesion property to the employed oil 

(Fig. 3-3b, c). To further study the oil wettability of the as-prepared device surface, 

another oil droplet was also utilized on the inclined surface. The OCA measurement 

results of as-prepared device with oil droplet sliding angle 3° ± 0.5° were presented in 

Fig. 3-3d-f. Accordingly, the oil/water mixture can be well separated via the hydrogel-

coated functionally integrated device due to the different wettabilities of its surface 

including superhydrophilicity and underwater superoleophilicity.  

 

Fig. 3-3 The dynamic underwater oil adhesion measurement on as-prepared divice 

surface: (a-c) An oil droplet was applied to contact the surface and can be moved easily; 

(d-f) The slant surface showed an ultralow affinity to the oil droplet. 

3.3.3 Oil-water separation 

The oil/water mixtures were separated by as-prepared device, shown as Fig. 3-4a, b. 

Driven by gravity only, the superhydrophilic property of hydrogel allowed the water to 

pass through the device (Fig. 3-4c). Meanwhile, the oil was prevented from permeating 

into the hydrogel due to underwater superoleophobic and low adhesion properties. From 

the amplifying Fig. 3-4c, we can observe that the blue oil layer was still stored in the 

device. The volume of oil was measured to calculate the separation efficiency. By this 

way, the oil/water mixtures were separated successfully without any external force, 
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indicating its easy operation and low energy consumption.  

 

Fig. 3-4 The oil/water separation process: (a) A mixture of water and blue-dyed oil was 

poured into the device. (b) Water passed through the device, (c) while oil was prevented 

from permeating into the hydrogel and remains in the device. 

In order to understand the separation efficiency of the as-prepared device, we have taken 

a dichloromethane-water mixture as an example to separate dichloromethane from water. 

A total of 5 mL dichloromethane labeled with blue dye (Fig. 3-5a and a’) was added to a 

beaker containing 5 mL of water. Since the density of water was lower than that of 

dichloromethane, the added water finally floated on the dichloromethane surface (Fig. 3-

5b). When we poured the dichloromethane-water mixture into the as-prepared device, 

water was soon taken up by the device, in filtrated through the walls, and finally gathered 

into the beaker due to gravitational effects (Fig. 3-5c). And then, the collected 

dichloromethane in the device was transferred to the original pipette, as shown in Fig. 3-

5c’. According to the original added volume of the dyed dichloromethane (5 mL), the 

calculated collecting efficiency was 99.5%. As oil spill accidents occur frequently 

throughout the world, it is crucial to extend the application of the device for different oil-

water mixtures, such as toluene, dichloromethane, canola oil and n-hexane. Separation 

efficiency was used to quantitatively describe the separation ability of device. It can be 

defined according to the ratio between the volume of collected oil after separation and 

that of original. As shown in Fig. 3-5d, the separation efficiencies of the as-prepared 

device for various oils were all above 98%, nearly no visible oil existed in the permeated 
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water, demonstrating the high efficiency of the as-prepared device in oil-water separation. 

What is more, the as-prepared device can be reused 6 times and still had high separation 

efficiency, for each time of separation, the collection efficiency of dichloromethane-water 

mixture was over 97%, which demonstrated its reproducibility, as shown in Fig. 3-5e. 

These results indicated that this novel superhydrophilic and underwater superoleophobic 

device was a potential candidate for oil-water separation, which would provide promising 

possibilities in industrial applications. 

 

 

Fig. 3-5 The process (a-c) of evaluating the separation efficiency of the 

dichloromethane–water mixture by as-prepared device; The magnification of (a) and (c) 

indicate the volumes in the pipette; (d) Separation efficiency of the as-prepared device 

for different oil/water mixtures; (e) Recycled experiments for separating oil from water 

by as-prepared device. 

For oil-water separation, a series of immiscible oil-water mixtures were poured onto 
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the as-prepared device. Water immediately permeated through the surface and oils were 

retained above. The oil contents in water before and after only one separation were 

measured by total organic carbon analyzer. During the course of the experiment, the 

solubility of oil in water is different with the oil type. The oil content in water also existed 

large difference. As shown in Fig. 3-6, before separation process, the oil contents were 

702.5 ppm, 242.6 ppm, 180.1 ppm and 4607.7 ppm for dichloromethane, toluene, n-

hexane and canola oil, respectively. The canola oil contains various water-soluble 

components such as amino acids which has led the highest oil content in water before 

separation. As shown in Fig. 3-7a, for the immiscible oil-water mixtures 

(dichloromethane, toluene, n-hexane), the oil contents were respectively 961.5 ppm, 

267.5 ppm, 194.1 ppm. The results showed, after the separation process, the oil was 

almost separation from the water and there was almost no leakage in water. The water 

flow rates were calculated by measuring the time for different kinds of oil-water mixtures, 

as shown in Fig. 3-7a. The highest water flow rate of 0.425 and 0.3841 m h-1 were 

achieved for the hexane-water and dichloromethane-water mixtures, respectively. This 

result indicated that the type of oils had little effect on permeating flow rate. For canola 

oil, after making it and water stirred thoroughly, the oil-water mixtures need take a long 

time to stratify. As mentioned above, the canola oil contains various water-soluble 

components which have led a high oil content in water (5055 ppm) and a high-viscosity 

fluid ,therefore the water flow rate was relatively low (0.03667 mh-1). In order to verify 

the repeatability of the as-prepared device, we had realized the test of the water flow rate 

for every cycle. During the six cycles experiments, the water flow rate was about 0.38 

mh-1 and kept stable. This is because the as-prepared device only allows water to permeate, 

as shown in Fig. 3-7b.  
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Fig. 3-6 Oil content in water of different oil types before oil-water separation 

 

 

Fig. 3-7 Oil-water separation results of the as-prepared device. (a) Oil content and the 

water flow rate after permeating a series of immiscible oil–water mixtures. (b) Water 

flow rate for permeating oil–water mixture through the as-prepared device with 
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different cycle index. 

Besides their ideal underwater superoleophobic property and high water-absorption 

capacity, the as-prepared device can also be actuated onto oil zones by means of a weak 

magnetic field. To confirm the hypothesis, we designed a system featuring a 

dichloromethane layer containing drops of dyed water at the surface of the beaker. The 

system was constructed by adding 0.1 mL of dyed water, whose density is lighter than 

dichloromethane, at different places at the surface of beaker (Fig. 3-8a). Afterwards, the 

as-prepared device was placed on the surface of the system. At the beginning, the as-

prepared device was floating over the oil surface, as shown in Fig. 3-8a. In this case, the 

as-prepared device remained immobile and could not absorb the blue water automatically. 

To pull the as-prepared device directionally towards the dyed water, we applied an 

external magnetic field above the beaker. Guided by the movement of the magnet, the as-

prepared device can directionally clean up the dyed water (Fig. 3-8b and c). When just 

coming into contact with the blue water droplets, the device quickly absorbed them. No 

blue water droplets were left on the surface (Fig. 3-8d), indicating the excellent capability 

of the device to directionally clean up the little water on the oil surface. The result 

demonstrated that the as-prepared device performed well, not only in the directional water 

collection, but also in the controlled magnetically responsive water absorption, exhibiting 

integrated functions. This design had broadened the application of as-prepared device in 

water-oil separation by the additional magnetic field. Meanwhile, the as-prepared device 

may be applied to closed-system to clean up little water, such as gas tanks, petroleum 

pipeline. 
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Fig. 3-8 (a) Dye-colored water on the surface of the dichloromethane in a watch glass; 

(b and c) subsequent removal of the little water by the magnetically driven the as-

prepared device; (d) cleaned oil surface after the process. 

3.4 Conclusions 

In summary, the author has develop a facile method for fabricating underwater low 

adhesive hydrogel-coated functionally integrated device to separate oil from mixtures 

with water. In particular, the commercially available nickel foams are functionalized by 

means of hydrogel coating. Compared with other preparation methods, the nickel foams 

coated by hydrogel are also a promising approach in oil-water separation. The technique 

is simple and easy to be scaled up, while the employed materials are inexpensive and 

some of them can be recycled. Therefore, I propose the use of the developed systems in 

the selective removal of little water from oil surface by means of a magnetic field, 

underwater superoleophobic, and water absorbing nickel foams from a distance toward 

the targeted areas with minimal energy consumption. By taking advantage of the 

superhydrophilic and underwater superoleophobic properties, the author has realized the 
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effective separation of oil-water mixtures, which demonstrated a re-collecting efficiency 

as high as 99.5%. What is more, it also can be reused 6 times and still had high separation 

efficiency. The as-prepared device would provide a novel strategy for handling oil spills 

under various conditions and can be applied in other oil-water separating systems. 

In this chapter, the author has fabricated the UWSOB material and investigated oil-

water separation by UWSOB material. However, the surface of this separation device was 

soft, which would suffer from its poor mechanical properties. Meanwhile, the soft 

material of separation device has no obvious porous structure, the oil-water separation 

process depended on permeation of water which led to a slow flow rate. Therefore, I 

would like to investigated the oil-water separation performed with SHBOI material which 

holds not only superhydrophobicity and high separation efficiency but also excellent 

robustness.  
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Chapter 4 Robust and Superhydrophobic 

Surface Modification by a “Paint+Adhesive” 

Method: Applications in Selfcleaning after 

Oil Contamination and Oil-Water 

Separation 

4.1 Introduction 

The wettability of solid surfaces is a renewed old topic which has impacted most fields 

of science and technology for a long time, from cave painting in the ancient to 

microfluidic devices in the modern [1]. In the past decades, bioinspired surfaces with 

superhydrophobicity that is one of the extreme states of surface wettability have been 

intensively explored and accelerated by discoveries of superwetting phenomena in nature 

[2-6]. The term superhydrophobicity was introduced in 1976 by Reick to describe 

hydrophobic particle coating made of hydrophobic fumed silicon dioxide, where water 

droplet maintains a contact angle (CA) θ> 150° and the force of adhesion is negligible. 

In 1997, Barthlott and Neinhuis revealed that the superhydrophobicity and self-

cleaning property of lotus leaves were caused by the microscaled papillae and the 

epicuticular wax, providing a monomicrostructure model [7]. Subsequently, Jiang et al. 

disclosed that there are micro- and nanoscaled hierarchical structures on the lotus leaf 

surface, that is, branch-like nanostructures on the top of micropapillae, which result in the 

superhydrophobicity [2]. Thus, the origin of superhydrophobicity of a lotus leaf becomes 

clear from a monoscaled model of microstructures to a dual-scaled model of hierarchical 

structures. These studies on superhydrophobicity activated the emerging applications of 

wettability from energy conversion, avoiding fluid drag in microfluidic devices, reducing 

fluid resistance for aquaculture devices, protection of electronic devices and oil−water 

separation [9-13]. In the following decade, lots of efforts have been proposed to develop 
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superhydrophobic surfaces, however, with the deepening of the research, robustness 

question of superhydrophobic surfaces was put on the more and more outstanding 

position, which was that the superhydrophobic surfaces were readily destroyed [14-20]. 

The superhydrophobic surfaces mostly shows a poor robustness, simultaneously 

depends on expensive and complicated roughness structures, which are inherently 

vulnerable to mechanical damages, sometimes abraded when there happens a tissue 

brushing. 

However, superhydrophobicity and robustness are generally known to be conflicting 

properties. As roughness increasing, hydrophobicity increases, nevertheless, robustness 

decreases. As a result, the practical applications of superhydrophobic surfaces have so far 

been limited on the materials that require robustness. Consequently, realizing both 

superhydrophobicity and robustness simultaneously by a simple and cost-effective 

method is still a technical challenge at present. Conventional strategies used to enhance 

device robustness typically involve generating chemical bonding between 

superhydrophobic coating and substrate or cross-linking the coating layers. Zhou et al.[21] 

fabricated a elastomeric thin film by combining low surface energy substance and a rough 

surface which was composed by a nanocomposite structure and can endow film with 

highly durable superhydrophobicity. Alternative approaches to increase device durability 

include introducing self-healing capability to superhydrophobic device. For example, Li 

et al.[22] developed a self-healing superhydrophobic fiber which made of a rigidly 

flexible porous polymer with micro- and nanoscaled hierarchical structure, the 

fluoroalkylsilane was reacted in the pores. The fiber showed excellent self-healing 

property after oxygen plasma treatment. However the above works still depended on 

expensive and complex techniques. 

Very recently, Lu et al.[23] developed a facile and simple method for fabricating 

superhydrophobic surfaces from various substrates. The process used dual-scale TiO2 

nanoparticles coated with perfluorooctyltriethoxysilane. They created an ethanol based 
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suspension that can be sprayed onto surfaces and the water-repellent surface was 

generated. 

After promoting the paint by adhesives, the painted surface achieved 

superhydrophobicity and robustness even after various kinds of damage. Similarly, Baron 

et al.[24] created a novel, facile and low-cost strategy to realize the superhydrophobicity 

on various substrates. They synthesized aluminum oxide nanoparticles modified by a new 

low surface energy substance-carboxylic acid with highly branched hydrocarbon chains. 

This low-cost and environmentally friendly low surface energy material could be used as 

a replacement of expensive and environmentally hazardous fluorocarbons. Then the 

aluminum oxide nanoparticles modified by carboxylic acid were sprayed onto the surface 

of substrate forming a superhydrophobic film. These works have provided an excellent 

idea for promoting the robustness and practicability of superhydrophobic surfaces. 

Inspired by the above works, the author developed in this work a more versatile strategy 

to fabricate mechanically robust, self-cleaning and superhydrophobic surfaces for both 

soft and hard substrates. The author used low-cost, non-toxic and mono-scale 

nanoparticles of calcium carbonate which were coated with perfluorooctyltriethoxysilane. 

Then the silanized nanoparticles were made into a suspension that can be sprayed onto 

surfaces to create a superhydrophobic rough surface. For all kinds of substrates, spray 

adhesive was directly coated onto abluent substrates surfaces to promote the robustness, 

and then the “substrates + adhesive” surface was treated with the paint by spay-coating. 

These superhydrophobic surfaces were applicable on various substrates include both hard 

and soft materials, as well as showed remarkable robustness against knife scratch and 

sandpaper abrasion, while retaining their superhydrophobicity. What is more, the 

superhydrophobic surfaces have shown promising potential applications in self-cleaning 

and oil-water separation, and remained excellent oil-water separation efficiency even 

after reuses. It is believed that the superhydrophobic surfaces fabricated by this facile and 

simple strategy can be readily and robustly used in large-scale industrial applications 



54 

where maintain harsh and oily environments, such as external wall coating and oil-water 

separation material. 

4.2 Experimental 

In this chapter, a versatile and simple “paint+adhesive” method was used to fabricate 

superhydrophobic surfaces for both soft and hard substrates by a straightforward spraying. 

Its superhydrophobicity and selfcleaning property even under oil immersion were 

investigated. Meanwhile, the robustness against knife scratch and sandpaper abrasion 

were studied. By taking advantages of superhydrophobicity under oil immersion, this 

surface was used for oil-water separation, the separation efficiency and reusability was 

investigated. 

4.3 Results and discussion 

4.3.1 Surface modification and characterization 

The robust self-cleaning surfaces were fabricated following the procedure shown in 

Fig. 4-1: firstly, the calcium carbonate nanoparticles with abundant hydroxyl were 

silanized with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane in an absolute ethanol 

solution. Stable oxane bonds between silane and calcium carbonate nanoparticles formed 

after stirring for 3 h under room temperature, and the solution was finally a paint-like 

suspension. Meanwhile, hard substrates (glass slide, PTFE pad, wood, aluminium sheet 

and stainless steel mesh) were washed by dry ethanol/ethanol–deionized water (v/v 

1:1)/deionized water sequentially for 15 min each time, following a drying process in an 

oven at 60 °C. And for soft substrates (paper and gauze), the surfaces were prepared by 

purging with sufficient nitrogen gas for 10 min at room temperature and ambient pressure. 

Then, to fabricate a robust surface, spray adhesive was used to promote the robustness of 

the painted superhydrophobic coatings: for all kinds of substrates, adhesive was directly 

kept spraying onto the abluent surfaces for 3s with a distance of 300 mm. Following, the 

paint-like suspension was sprayed onto the “substrates + adhesive” surfaces: a 0.8 mm 
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nozzle spray gun was used from the surfaces at a distance of 300 mm, the paint was 

sustained spraying for 3s with the pump output of 60 L/min under 0.78 Mpa. Finally, the 

residual solvent on robust self-cleaning surface was evaporated under atmosphere. 

 

Fig. 4-1 Schematic illustration of the preparation process and properties of the robust 

self-cleaning surface. 
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Fig. 4-2 The SEM images, CA and EDX measurements of different glass slide samples: 

(a) bare glass slide; (b) glass slide with pristine calcium carbonate coating; (c) glass 

slide with superhydrophobic coating modification. 

Evident changes in wettability of the substrates surfaces occurred in the process of 

preparing the robust self-cleaning surfaces. The glass slide sample was tested as a 

representative, SEM, CA and EDX analysis was used to prove the superhydrophobic 

coatings modification.  

As shown in Fig. 4-2a, the bare glass surface was washed by dry ethanol/ethanol-

deionized water (v/v 1:1)/deionized water carefully, followed by SEM, CA and EDX 

analysis. The surface morphology in SEM image revealed the bare glass slide had a 

homogeneous and smooth surface, and signals of Na, Ca, Si and O elements, which 
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constituted glass primarily, were detected from the EDX analysis, ascertaining thorough 

cleaning of the surface by ethanol and water. Meanwhile, the bare glass surface emerged 

hydrophilicity due to the presence of hydroxy, and the CA of water was 44.3°. To fabricate 

the superhydrophilic sample, the abluent glass slide was coated by spray adhesive and 

pristine calcium carbonate nanoparticles successively. As shown in Fig. 4-2b, the SEM 

images revealed that the calcium carbonate nanoparticles showed a regular cubic in shape 

while being reasonably monodisperse, with the average diameters of 80 nm. Meanwhile, 

it can be observed that a rough surface formed by accumulating calcium carbonate 

nanoparticles evenly coated the glass slide. It is well-known that surface chemistry and 

surface morphology are two critical factors to obtain superhydrophobicity on a solid 

surface. Chemical composition would ensure the hydrophobicity of surfaces, while 

morphology would amplify hydrophobicity into superhydrophobicity. Rough surface 

with micro-nano structure is one of the most typical models which can amplify the 

wettability of the solid surface [24]. For example, as mentioned above, an abluent glass 

or freshly cleaved mica surfaces were simply naturally hydrophilic, but not 

superhydrophilic. Although water seemed spread on the surface with a few degrees, a flat 

homogeneous surface would not realize the superhydrophilicity (CA of 0°). However, it 

can be achieved on a rough surface accumulated by hydrophilic nanoparticles such as 

TiO2 or CaCO3. Similarly, the efforts made by Maguire-Boyle et al. [3] also provided a 

strong evidence for this theory. They fabricated a range of hydrophilic surfaces on silicon 

wafer coated with different carboxylic acids modified alumina nanoparticles. And the 

surface achieved the most hydrophilic one by being coated with cysteic acid modified 

alumina nanoparticles, which was in close proximity to superhydrophilic. Therefore, the 

CA analysis in Fig. 4-2b revealed the glass slide surface emerged a superhydrophilicity 

which can be confirmed by the CA of 0°. The surface can be easily wetted by water 

because the rough surface influenced on the wettability property of calcium carbonate 

nanoparticles seriously, i.e., the roughness structure enhanced the hydrophilic property of 

pristine calcium carbonate nanoparticles with abundant hydroxyl [1]. As shown in EDX 
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analysis of Fig. 4-2b, before the superhydrophobic modification step, Ca, O and C were 

the dominant elements on the surface. In contrast, after the promotion of robustness by 

spray adhesive and modification of superhydrophobic coating, obvious F, Si (belongs to 

1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane) and Cl (belongs to adhesive) signals could 

be detected by EDX analysis additionally (Fig. 4-2c). Meanwhile, the SEM image 

revealed the calcium carbonate nanoparticles silanized with 1H, 1H, 2H, 2H-

perfluorooctyltriethoxysilane maintained the initial cubic shape while being reasonably 

monodisperse, with average diameters of 80 nm. Likewise, the nanoparticles accumulated 

into the rough surface which can be seen in the SEM images, however, with the presence 

of low surface energy substance 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, the glass 

slide surface emerged a superhydrophobicity which can be confirmed by the CA of 151.7°. 

The surface simply cannot be wetted by water because the roughness structure amplified 

the hydrophobicity of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane into 

superhydrophobicity. 

4.3.2 Superhydrophobicity and self-cleaning property 

To investigate the superhydrophobicity and robustness of the painted surfaces, Scarlet 

4GE was dissolved into deionized water, and then a droplet of solution was dripped onto 

the surfaces, which was fixed to be a 20° tilting angle. Following, a knife was used to 

scratch the painted surfaces along a meshy path, finally by the water dropping test to 

confirm the robustness. The tests were presented graphically in Fig 4-3. The painted 

surfaces on various substrates showed water-proofing property and robustness from the 

knife-scratch tests. Fig. 4-3a was a demonstration of a red-dyed water droplet sliding off 

the painted glass slide surface. It can be concluded from the graphs that water moved 

easily off the superhydrophobic coating immediately. 

 To expand this novel superhydrophobic surface into large-scale industrial and daily 

applications, the superhydrophobic paint needs to be tested on different substrates in order 

to investigate the universal of this strategy. In Fig. 4-3b-g, we compared the 
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superhydrophobicity of the coatings on PTFE pad, wood, aluminium sheet, paper, gauze 

and stainless steel mesh substrates. Water droplets completely left the surfaces without 

wetting or even contaminating the surfaces, indicating that the surfaces were 

superhydrophobic, especially the soft substrates also gained the nonwetting property after 

treating with superhydrophobic paint. This was due to the low surface energy substance 

1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, by combining with the roughness structure, 

a high ratio of trapped air appeared in the interface between solid and liquid, the water 

droplets can be suspended due to the multilevel discontinuous three-phase contact line, 

and low adhesion exists, which is similar to the case of lotus leaf.25,26 Even after knife-

scratch tests, the painted surfaces on all kinds of substrates still retained 

superhydrophobicity. Due to good compatibility of the superhydrophobic paint and spray 

adhesive, the superhydrophobic surfaces realized the robustness even though the inherent 

mechanical damage resistance was as weak as most superhydrophobic surfaces. As shown 

in Fig. 4-3(a5-a8, b2-b4, c2-c4, d2-d4, e2-e4, f2-f4 and g2-g4), the painted surfaces was still 

clean and dry even after knife-scratch and then water drop. 

 

 

 

 

 



60 

 

 

Fig. 4-3 The superhydrophobic coating painted surfaces of (a) glass slide, (b) PTFE pad, 

(c) wood, (d) aluminium sheet, (e) paper, (f) gauze substrates and (g) stainless steel 

mesh. Water droplets can move easily away from the superhydrophobic coating, and the 

painted surface retained its water-repellent property even after knife scratches. 
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Fig. 4-4 SEM images taken before and after knife-scratch tests on the superhydrophobic 

coating painted surfaces of (a) glass slide, (b) PTFE pad, (c) wood, (d) aluminium sheet, 

(e) paper, (f) gauze substrates and (g) stainless steel mesh. 
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The SEM images of different substrates before and after knife-scratch tests were shown 

in Fig. 4-4. As can be seen, before knife-scratch tests (Fig. 4-4 a1-a2, b1-b2, c1-c2, d1-d2, 

e1-e2, f1-f2 and g1-g2), calcium carbonate nanoparticles evenly coated on the surfaces of 

various substrates, and rough surfaces formed by accumulating the nanoparticles. For all 

kinds of substrates, the painted surfaces did not lose their superhydrophobicity after knife-

scratch tests (Fig. 4-4 a3-a4, b3-b4, c3-c4, d3-d4, e3-e4, f3-f4 and g3-g4). It can be observed 

that the scratch of knife showed about 80~100 µm wide, and the substrates exposed after 

knife- scratch. However, the width of scratch was far smaller than the size of water 

droplets, due to the atmospheric pressure, droplets crossed over the scratch without 

wetting the exposed substrates. Therefore, the painted surfaces still remained 

superhydrophobicity. Especially the gauze substrates also gained robustness against 

knife-scratch tests and remained superhydrophobicity, as can be seen in Fig. 4-4 f3-f4, the 

fiber of gauze was partially destroyed but superhydrophobic paint maintained the original 

appearance, which was because the surface roughness could be protected by its inherent 

flexibility and ability to reduce direct friction between coating and surface. 

 

Fig. 4-5 The 3D optical surface images, SEM images and contact angle of the painted 

surfaces with different paint spray time. (a) 1 s; (b) 2 s; (c) 3 s; (d) 4 s; (e) 5 s; (f) glass 

slide. 
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To quantitatively investigate the effect of fabricating conditions on superhydrophobic 

surfaces, the spray time of superhydrophobic paint onto glass slides was regulated, and 

then the roughness and superhydrophobicity of surfaces was discussed. As shown in Fig. 

4-5, paint spray time of 1 s, 2 s, 3 s, 4 s, 5 s and bare glass slide were studied, the 

roughness(Ra) showed obvious difference, which were 5807 nm, 3253 nm, 1894 nm, 

1988 nm, 1862 nm and 0.485 nm. As the spray time increasing the Ra decreased, this was 

because that the roughness of adhesive sprayed on glass slide was large while the 

nanoparticles in superhydrophobic paint filled the interspace of adhesive forming a 

smoother surface. However, it was worth noting that the Ra of painted surfaces did not 

change and kept at about 1900 nm when the spray time rose to 3 s, which was the critical 

spray time for paint covering surface entirely. After completely coverage, the Ra value of 

surface tends to stable and showed the roughness accumulated by nanoparticles rather 

than adhesive. Meanwhile, the roughness had an effect on superhydrophobicity of 

surfaces, as the adhesive was covered by paint gradually, the contact angles increased and 

were 125.8°, 140.6°, 151.7°,150.7° and 151.4°, likewise, spray time of 3 s was the critical 

time for superhydrophobicity due to the complete coverage of surfaces. In addition, it can 

be observed from SEM images that the exposed adhesive was covered gradually by 

nanoparticles and the coverage tended to be tight. 
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Fig. 4-6 Demonstration of the (a) superhydrophobicity and (b) self-cleaning property of 

dirt under oil (hexane) of the painted surface on glass slide. 

There is few research has been reported on any superhydrophobicity or self-cleaning 

tests under oil immersion. Due to the lower surface tension of oil than that of water, the 

superhydrophobic surfaces were vulnerable to the penetration of oil, which resulted in 

losing their water repellency [27]. Superamphiphobic surfaces which repel both water 

and oil seems to be an effective solution to this problem [28, 29]. However, both self-

cleaning from water repellency and a smooth coating of oil are imperative to many 

occasions, like bearings and gears lubrication. Under those situations, superamphiphobic 
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surfaces are going to be invalid due to its lubricating oils repellency characteristic. 

The superhydrophobicity and self-cleaning tests of the painted surface under oil 

(hexane) were emerged graphically in Fig. 4-6a, a glass slide was employed as an example 

for these tests. As can be observed from Fig. 4-6a, water droplets still maintained 

“marbles” at the oil-solid interface without wetting the painted surface even immersed in 

oil, rather than forming a two-layer system, the droplets then rolled off, thus indicating 

that the surfaces retained their superhydrophobicity after being immersed in oil. 

Meanwhile, the superhydrophobic surface had a good self-cleaning and low adhesive 

property even immersed in oil, we showed in Fig. 4-6b, a dirt-removal test on the painted 

glass slide surface under oil immersion. The painted surface was fully immersed in oil 

and then dirt (dust and soil) was put onto the surface. To test the dirt-removal property, 

water was dropped onto the painted surface so as to remove the dirt. Obviously, the water 

droplets can move easily away from the surface while taking off dirt, which meant the 

superhydrophobic paint can prevent the infiltration of water and the contamination of dirt. 

When the painted surface was immersed in oil, the oil gradually penetrated into the 

surface because of its superhydrophobicity and worked as a lubricating fluid. Due to dual 

supporting by both lubricating fluid and inherent superhydrophobicity, water droplets still 

remained marble-shape. Likewisely, the self-cleaning behavior immersed in oil could also 

be explained by this mechanism [30-32]. Dirt could be easily wiped off by passing water 

over the surface. Precisely because of these reasons, the painted surface retained its 

superhydrophobicity and self-cleaning property even if being immersed in oil. It is 

believed that the paint with excellent superhydrophobicity and self-cleaning property can 

be extensively applied on various materials, especially for those substrates vulnerable to 

pollution, such as those used for clothes and external wall. 

4.3.3 Robustness 

The main cause limits widespread application of superhydrophobic coatings lies in the 

low level of surface robustness and the surface roughness is usually micro- or nano-scale 
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that is mechanically weak and easily gets abrasion [18]. Gauze and paper would be used 

as soft substrate to protect surface roughness since they hold inherent flexibility and be 

able to cushion direct impacts occurring on coating and surface [37]. However, micro-

nanostructures on hard substrates are apt to be destructive or removed. As this work has 

proposed a new method that utilize adhesive for adhering superhydrophobic coatings on 

substrates, detailed and robust adhesive can be applied increasingly and 

superhydrophobic surfaces, which has the feature of inherent weak robustness, then can 

be coped with well. 

 

Fig. 4-7 Sandpaper abrasion tests. (a and b) One cycle of the sandpaper abrasion test. (c) 

Plot of mechanical abrasion cycles and water contact angles after each abrasion test. 

For the further study on robustness of painted surfaces, a glass slide sample was used 

for the sandpaper abrasion tests and shown in Fig. 4-7. The glass sample was placed face-

down to sandpaper under a weight at 100 g and moved longitudinally for 10 cm along the 

ruler (Fig. 4-7a). Following, the sample was rotated by 90° in situ and then moved 

transversely for 10 cm along the ruler (Fig. 4-7b). This procedure guaranteed the surface 

was abraded both longitudinally and transversely, which could be defined as one abrasion 

cycle. The optical photographs before and after 30 cycles of sandpaper abrasion tests were 

shown in the inset of Fig. 4-7a and b, respectively. It can be observed that the white 
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superhydrophobic coating was not peeled off from the glass substrates. Meanwhile, water 

contact angles after each abrasion cycle were shown in Fig. 4-7c, and it can be seen that 

the static water contact angles were between 153° and 160°, indicating the painted surface 

retained superhydrophobicity after sandpaper abrasion tests. The SEM image and contact 

angle of the painted surface after 30 cycles of sandpaper abrasion tests was shown in the 

inset. As can be seen, even after 30 cycles of sandpaper abrasion, the painted surface still 

remained abundant calcium carbonate nanoparticles and the contact angle was 157.1° 

verifying the robustness and superhydrophobicity once again. 

Comparison with knife-scratch tests, sandpaper abrasion test was a more powerful 

damage. Even so, after different damages, the painted surface still remained 

superhydrophobicity, indicated the robustness of the superhydrophobic paint was 

efficiently enhanced. 

In order to employ the sprayed surfaces to more widely application, it is very necessary 

to investigate the effect of permanent immersion in water on the surfaces. I have 

immersed the superhydrophobic surfaces into water for 120 h, then the weight of the 

sample was investigated. 

 

Fig. 4-8 The weight-change of sprayed superhydrophobic surfaces immersed in water 

for 60 h. 
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As can be seen from Fig. 4-8, before immersion in water, the weight of the sprayed 

sample was 6.3854 g. At the first stage of immersion, the sample absorbed water and the 

weight had a slightly increase. However, when the immersion time reached 36 h the 

weight became stable and was about 6.75 g which indicated the sample has reached 

saturated adsorption of water. For reasons of this phenomenon, the superhydrophobic 

calcium carbonate nanoparticles on topside of the sprayed sample would not absorb water 

because it held the repellency of water and was solid nanoparticle, therefore, the weight-

change should be attributed to the water adsorption of sprayed adhesive. The 

superhydrophobicity of sprayed sample after immersion had also proved this point. 

4.3.4 Oil-water separation 

The superhydrophobic paint can also be utilized as an oil-water separation membrane 

on mesh owing to its durable superhydrophobicity under oil. Therefore, we used the same 

“superhydrophobic paint +adhesives” method to coat the paint on a stainless steel mesh, 

then the painted mesh was used to separate oil-water mixture. Dichloromethane-water 

mixture was used as a representative to investigate the oil-water separation efficiency of 

the separation device, and the separation efficiency was studied as shown in Fig. 4-9, 10 

and 11. 
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Fig. 4-9 A selective oil-water separation using the painted stainless steel mesh: (a) The 

oil-water mixture and separation device were prepared, then (b) the mixture was poured 

into the device. (c) Oil passed through the painted stainless steel mesh, (d) while water 

was prevented from flowing down and retained above. After separation test, (e and f) 

the painted stainless steel mesh was still superhydrophobic and the water droplets 

completely left the surface without wetting or even contaminating the surface. 

After fabricating the painted mesh by “superhydrophobic paint +adhesives” method 

and demonstrating the superhydrophobicity, a rounded painted mesh was placed between 

a split type funnel formed an oil-water separation device, then the device was placed on 

the top of a flask as shown in Fig. 4-9a. Meanwhile, the oil-water mixture was prepared 

by mixing the same volume (5 mL) of blue-dyed dichloromethane and red-dyed deionized 

water, forming separated upper and bottom layers. Then the oil-water mixture was poured 

rapidly into device, dichloromethane soon sank to the bottom of the device because its 

density was higher than that of water. Driven by gravity only, blue-dyed dichloromethane 

was immediately taken up by the device, penetrated through the painted mesh, and finally 

swirled into the flask (Fig. 4-9b and c). There was not any leaked water in flask, this was 

because the superhydrophobicity of the painted mesh even if was immersed in oil. It was 

emerged in Fig. 4-9d that the red water layer was still remained in the device. In addition, 

after the oil-water separation course, painted mesh was taken out from the device and 

tested superhydrophobicity. As can be seen in Fig. 4-9e and f, water droplets did not wet 
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or even contaminate the surface, reconfirmed that the painted surface would remain 

superhydrophobicity even under oil immersion. Meanwhile, this phenomenon implied 

that the as-prepared device could be reused. 

The theory created by Cassie et al. [38], has been well-known as a classic theory, which 

indicates the superhydrophobicity formed from the water-air-solid interface. The air 

molecules locked in micro-nanostructures, water and rough surface form the water-air-

solid system. Similarly, the wetting behavior in water-oil-solid system could also be 

explained by this strategy. The oil-water mixture was separated successfully only 

depended on gravity by taking advantage of the feature of superhydrophobic surface, 

which has indicated easy operation and low energy consumption of the strategy.  

 

Fig. 4-10 Water content in oil of different oil types before oil-water separation 
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Fig. 4-11 Oil-water separation results of the as-prepared device. (a) Water content in oil 

and oil flow rate for penetrating a series of immiscible oil-water mixtures. (b) Water 

content in oil and oil flow rate for penetrating gasoline-water mixture through the as-

prepared device with different cycle index. (c) Plots of separation cycles for gasoline-

water mixture and water contact angles after each cycle. 
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It is very important to spread the application of as-prepared device to different oil-water 

mixtures because of the oil spill accidents throughout the world, such as dichloromethane 

toluene, gasoline and chloroform. Separation property of the as-prepared device could be 

quantitatively described according to the separation efficiency, which was defined by 

water content in oil after separation. To investigate the oil-water separation, four kinds of 

mixtures were separated by the as-prepared device. Oil instantly penetrated through the 

painted mesh while water was retained above. The water content in oil before and after 

first separation was measured by Karl Fischer Moisture Titrator. As can be seen from Fig. 

4-10, for different oil-water mixtures, water content in oil differed from one another 

significantly before separation, because the solubility of oil in water exist large difference. 

The water contents in oil (dichloromethane, toluene, gasoline and chloroform) before 

separation were respectively 86 ppm, 52 ppm, 77 ppm and 104 ppm. The chloroform has 

a better compatibility with water, therefore, after simply mixing, the water content in 

chloroform was relatively high (104 ppm). As can be observed in Fig. 4-11a, the values 

of water content in oil (dichloromethane, toluene, gasoline and chloroform) were 

respectively 115 ppm, 55 ppm, 90 ppm and 150 ppm. This result showed that the water 

was almost separated from oil and there was almost no leakage in oil. As mentioned above, 

the water content in chloroform after separation was relatively high (150 ppm) because 

of its better compatibility with water. Meanwhile, the oil flow rates were calculated by 

measuring the passing time of oil phase and shown in the same figure. The highest flow 

rate of 1.475 and 0.955 mh-1 were achieved from the gasoline-water and dichloromethane-

water mixtures, respectively, indicating the oil kinds had great influence on penetrating 

flow rate. For chloroform, after stirring its mixture thoroughly, the oil-water mixture took 

a longer time to stratify because of its better water-soluble and relatively high viscosity. 

As a result, the water content in chloroform was high (150 ppm) and the oil flow rate was 

relatively low (0.701 mh-1). Next, the as-prepared device was reused to separate gasoline-

water mixture for 6 times to verify its repeatability, and we had realized the tests of water 

content and oil flow rate for every circle. During the 6 cycle tests, the oil flow rate was 



73 

about 1.475 mh-1 and kept stable, and for each time of separation, the water content in oil 

was below 140 ppm (Fig. 4-11b), which was because the superhydrophobic painted mesh 

only allowed oil penetrating. In addition, the CA of painted stainless steel mesh after each 

separation cycle was shown in Fig. 4-11c, it was observed that the static water contact 

angles were between 151° and 155°, indicating the painted surface still retained 

superhydrophobicity even after 6 cycles separation. The results demonstrated that the 

superhydrophobic surfaces performed well, not only in the self-cleaning property and 

robustness, but also in oil-water separation application, exhibiting integrated functions. 

4.4 Conclusions 

In summary, the author have developed a versatile and simple strategy to fabricate 

robust, self-cleaning and superhydrophobic surfaces for both soft and hard substrates by 

a straightforward spraying method. This superhydrophobic surface remained its 

superhydrophobicity and self-cleaning property even under oil immersion. Meanwhile, it 

showed remarkable robustness against knife scratch and sandpaper abrasion. In particular, 

the surface still retained its superhydrophobicity even after 30 abrasion cycles with 

sandpaper. Because of the superhydrophobicity under oil immersion, this surface could 

also be used for oil-water separation as well as showed excellent separation efficiency. 

Further, the oil-water separation device has realized 6 times reuses and still remained 

excellent oil-water separation efficiency. It is believed that the superhydrophobic surface 

can be simply, flexibly, and robustly used in large-scale industrial applications where 

maintain harsh and oily environments, such as external wall coating and oil-water 

separation material. 

  Excellent robustness has been realized by utilizing the “paint+adhesive” method, the 

prepared surfaces had not only robustness, self-cleaning and superhydrophobicity but also 

outstanding separation efficiency. These excellent properties were depended on robust 

and satisfactory roughness structure. However, roughness structure scatters the light 

which affects transparence of the prepared device seriously. Therefore, the applications 
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of superhydrophobic materials have suffered from the limits of poor transparence. In next 

chapter, I would like to develop a not only robust and superhydrophobic but also 

transparent surface, meanwhile, this surface would be used in oil-water separation and 

the separation efficiency would be investigated. This kind of novel surface would be used 

in touch screen of telephone where transparence and robustness are both significant. 

Furthermore, this transparent, robust and superhydrophobic surface can be also fabricated 

on transparent materials, thus visible oil-water separation can be developed. Oil-water 

separation would be easier to manage.  
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Chapter 5 Candle Soot as a Template for 

Transparent, Robust and Superhydrophobic 

Surface and its Application in Oil-Water 

Separation 

5.1 Introduction 

The wettability of solid surfaces is a renewed old topic which has impacted most fields 

of science and technology for a long time, from cave painting in the ancient to 

microfluidic devices in the modern.[1] In past decades, bioinspired surfaces with 

superhydrophobicity that is one of the extreme states of surface wettability have been 

intensively explored and accelerated by discoveries of superwetting phenomena in 

nature.[2-6] The term superhydrophobicity was introduced in 1976 by Reick to describe 

hydrophobic particle coating made of hydrophobic fumed silicon dioxide, where a water 

droplet maintains a contact angle (CA) θ > 150° and the force of adhesion is negligible. 

In 1997, Barthlott and Neinhuis revealed that the superhydrophobicity and self-

cleaning property of lotus leaves were caused by microscaled papillae and epicuticular 

wax, providing a mono-microstructure model.[7] Subsequently, Jiang et al. disclosed that 

there are micro- and nanoscaled hierarchical structures on the lotus leaf surface, that is, 

branch-like nanostructures on top of the micropapillae, which result in the 

superhydrophobicity.[2] Thus, the origin of superhydrophobicity of a lotus leaf becomes 

clear from a monoscaled model of microstructures to a dual-scaled model of hierarchical 

structures. These studies on superhydrophobicity activated the emerging applications of 

wettability from energy conversion, avoiding fluid drag in microfluidic devices, reducing 

fluid resistance for aquaculture devices, protection of electronic devices, and oil−water 

separation.[8-12] However, with deepening of the research, the robustness question of 

superhydrophobic surfaces was put into a more outstanding position, which was that the 

superhydrophobic surfaces were readily destroyed.[13-19] Conventional 
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superhydrophobic surfaces mostly depend on expensive, sophisticated, and fragile 

roughness structures, which are inherently vulnerable to mechanical damage and 

sometimes abraded when tissue brushing happens. In the meantime, roughness structure 

as a critical factor to obtain superhydrophobicity on solid surface has always prevented 

the surfaces from transparence seriously.[20] Therefore, poor robustness and transparence 

has turned into the bottleneck for large-scale industrial applications of the 

superhydrophobic surfaces. 

To handle this problem, many efforts have been devoted to realizing the 

superhydrophobic surfaces with both robustness and transparence simultaneously by a 

simple and cost-effective method. Ebert et al. [21] used deep reactive ion etching to create 

rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an 

additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition 

of perfluorooctyltrichlorosilane following surface activation with O2 plasma. The effects 

of surface roughness and the additional surface modifications were examined with respect 

to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear 

resistance, a sliding wear experiment was performed using an atomic force microscope. 

Rao et al. [22] synthesized optically transparent superhydrophobic silica films at room 

temperature using sol-gel process by a simple dip coating technique. The molar ratio of 

MTMS:MeOH:H2O was kept constant at 1:10.56:4.16, respectively. Methyl groups were 

introduced in the silica film by post-synthesis grafting from two solutions using 

trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents in 

hexane solvent, individually. The TMCS modified films exhibited a very high water 

contact angle (166±2°) in comparison to the HMDZ (138±2°) modified films, 

indicating the water repellent behavior of the surface. However, the above works still 

depended on expensive and complex techniques. 

Very recently, Xu Deng et al.[23] designed an easily fabricated, transparent, and oil-

rebounding superamphiphobic coating. A porous deposit of candle soot was coated with 
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a silica shell. The black coating became transparent after calcination. After silanization, 

the coating was superamphiphobic and remained so even after its top layer was damaged 

by sand impingement. 

Inspired by this work, the author described a versatile and simple strategy to fabricate 

robust, transparent and superhydrophobic coatings. The surface to be coated, in our case 

a quartz wafer, was held above the flame of a paraffin candle. Deposition of a soot layer 

turned the wafer black. This candle soot layer had roughness structure and 

superhydrophobicity. However, this structure was fragile because of its physical particle-

particle interactions were weak. When water rolled off the surface, the drop carried soot 

particles away with it until almost all the soot deposition was removed. Inspired by this 

promising morphology of soot, we made use of chemical vapor deposition of SiCl4. 

Similar to a Stöber reaction, a filmy silica shell was formed by hydrolysis and 

condensation. Calcining the hybrid soot-silica shell in air caused combustion of the 

carbon core, while the silica shell kept its roughness and network texture. To reduce the 

surface energy, the hydrophilic silica shell coated substrate was modified with a 

semifluorinated silane by chemical vapor deposition. After that, the surface obtained 

remarkble robustness, transparence and superhydrophobicity. What is more, the 

superhydrophobic surface showed promising potential applications in oil-water 

separation and retained excellent oil−water separation efficiency even after reuses. It is 

believed that this superhydrophobic surface can be simply, flexibly, and robustly used in 

large-scale industrial applications where maintain harsh, transparent and oily 

environments, such as external wall coating, touch screen and oil-water separation 

material. 

5.2 Experimental 

In this chapter, I describe a simple way to make robust, transparent, superhydrophobic 

coatings. The surface to be coated, in our case a quartz wafer, is held above the flame of 

a paraffin candle. Deposition of a soot layer turns the wafer black. This soot surface has 
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roughness structure and superhydrophobicity. However, the structure is fragile because 

the particle-particle interactions are only physical and are weak. When water rolls off the 

surface, the drop carries soot particles with it until almost all of the soot deposit is 

removed. Inspired by the promising morphology of soot, we made use of chemical vapor 

deposition (CVD) of SiCl4.  Similar to a Stöber reaction, silica is formed by hydrolysis 

and condensation. Calcinating the hybrid carbon/silica network in air caused combustion 

of the carbon core, but the layer kept its roughness and network texture. To reduce the 

surface energy, the hydrophilic silica shells were coated with a semifluorinated silane by 

CVD. After CVD, the surface obtained superhydrophobicity. This surface can also been 

used in oil-water separation. 

5.3 Results and discussion 

5.3.1 Surface modification and characterization 

Highly transparent and superhydrophobic robust coating was fabricated 

following the procedure depicted in Fig. 5-1: firstly, a quartz wafer was washed by 

dry ethanol/ethanol–deionized water (v/v 1:1)/deionized water sequentially for 15 

min each time, following a drying process in an oven at 60°C. Then, the abluent 

wafer was held in the flame of a candle until a soot layer a few micrometers thick 

was deposited. Subsequently, the soot coated substrate was placed in a desiccator 

together with an open glass dish containing about 1 ml of SiCl4. The desiccator 

was closed again and chemical vapor deposition of SiCl4 was carried out for 2 h. 

Similar to a Stöber reaction, a silica shell was formed as a coating on candle soot 

by hydrolysis and condensation of SiCl4. Consequently, the quartz wafer coated by 

candle soot and silica shell was calcinated in air. The silica coating prepared by 

Stöber reaction was porous. During calcination, candle soot composed of carbon 

polymer thermally degraded and diffused through the silica coating. After 

calcination of the soot-silica shell coated substrate at 600°C for 30 min in air, a 

superhydrophilic and hollow silica shell was obtained on the quartz wafer. To 
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transform it into superhydrophobic, the silica shell coated substrate with abundant 

hydroxyl was performed chemical vapor deposition in a desiccator together with 

an open glass dish containing about 1ml of Trichloro(1H, 1H, 2H, 2H-

perfluorooctyl)silane, stable oxane bonds between silane and silica shell formed by 

left for 2h at 60°C, the silica shell finally achieved superhydrophobicity. 

Fig. 5-1 Schematic illustration of the preparation process and properties of the 

transparent, roubust and superhydrophobic surface. 
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Fig. 5-2 The SEM images, CA and EDX measurements of different glass slide samples: 

(a) bare quartz wafer; (b) quartz wafer with a candle soot layer; (c) quartz wafer coated 

by candle soot and silica shell; (d) quartz wafer with superhydrophobic silica shell. 

Evident changes in wettability of the substrates surfaces occurred in the process of 

preparing highly transparent and superhydrophobic robust coating. The quartz wafer 

sample was tested as a representative, SEM, CA and EDX analysis was used to prove the 
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modification. 

As shown in Fig. 5-2a, the bare quartz wafer was washed by dry ethanol/ethanol-

deionized water (v/v 1:1)/deionized water carefully, followed by SEM, CA and EDX 

analysis. The surface morphology in SEM image revealed the bare quartz wafer had a 

homogeneous and smooth surface, and signals of Si and O elements only, which 

constituted quartz primarily, were detected from the EDX analysis, ascertaining thorough 

cleaning of the surface by ethanol and water. Meanwhile, the bare quartz surface emerged 

hydrophilicity due to the presence of hydroxy, and the CA of water was 40.7°. To fabricate 

the candle soot template, the abluent quartz wafer was held in the flame of a candle for 

3-5 s until a black soot layer a few micrometers thick was deposited. As shown in Fig. 5-

2b, the SEM images revealed that the soot consisted of carbon particles with a regular 

diameter of 30 to 40 nm, forming a loose, porous layer. Meanwhile, it can be observed 

that a rough surface formed by accumulating candle soot nanoparticles evenly on the 

quartz wafer. It is well-known that surface chemistry and surface morphology are two 

critical factors to obtain superhydrophobicity on a solid surface. Chemical composition 

would ensure the hydrophobicity of surfaces, while morphology would amplify 

hydrophobicity into superhydrophobicity. Rough surface with micro-nano structure is one 

of the most typical models which can amplify the wettability of the solid surface.[24] For 

example, the surface of abluent plastic plate were simply naturally hydrophobic, but not 

superhydrophobic. Although water seemed cannot wet the surface, a flat homogeneous 

surface would not realize the superhydrophobicity (CA above 150°). However, it can be 

achieved on a rough surface accumulated by hydrophobic nanoparticles such as candle 

soot nanoparticles, hydrophobic candle soot particles accumulated on quartz wafer 

forming a roughness structure, which amplified hydrophobicity into superhydrophobicity. 

Therefore, a water drop gently deposited on the hydrophobic candle soot coated surface 

showed a contact angle above 150° and rolled off easily, demonstrating the surface’s 

superhydrophobicity. However, the soot deposition layer was fragile because the physical 
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particle-particle interactions were too weak. When water rolled off the surface, droplet 

carried soot particles away with it until almost all the deposition was removed and then 

the surface underwent a wettability transition. Inspired by this promising morphology and 

superwettability of candle soot deposition layer, we adopted a novel approach to coat the 

soot layer with a silica shell, making use of chemical vapor deposition of SiCl4. The soot-

coated substrate was placed in a desiccator together with an open glass dish containing 

about 1 ml of SiCl4. After 2 h, the soot particles were coated by a silica shell due to the 

hydrolysis and condensation of SiCl4. Meanwhile, as can be observed in Fig. 5-2c 

obviously, the average diameter of soot particles increased slightly after deposition, but 

the primary morphology of soot layer was maintained, i. e., the roughness structure of 

candle soot layer was not destroyed by chemical vapor deposition of SiCl4. Therefore, as 

mentioned above, due to the hydrophilicity of silica and roughness structure provided by 

candle soot layer, the silica shell achieved superhyrophilicity (CA of 0°). Calcining the 

soot-silica shell coated substrates at 600°C for 30 min in air caused combustion of the 

candle soot layer (Fig. 5-2d). Only isolated chains of soot particles, which were not linked 

in silica shell, broke during calcination. Nevertheless, the hollow silica shell was retained 

and still kept its roughness structure and porous texture. To reduce the surface energy, the 

superhydrophilic silica shell was modified by Trichloro(1H, 1H, 2H, 2H-

perfluorooctyl)silane via chemical vapor deposition method. After modification, a water 

drop placed on top of the coating formed a static contact angle of 152.1°. Owing to the 

extremely low adhesion of the surface to water, it was difficult to deposit water drops, 

because they immediately rolled off. 

For applications on glass surfaces such as goggles or touch screens, the 

superhydrophobic coating needs to be transparent and mechanically robust. The silica 

shell coated on candle soot had a shell thickness well below the wavelength of visible 

light, such thin shells are highly transparent. After calcination of the black carbon 

template, candle soot nanoparticles disappeared and air filled the void. Therefore, the 
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silica shell coated substrate was white, while, when liquid (e. g. water or ethanol) fill in 

the void, the substrate was transparent (Fig. 5-2d). 

5.3.2 Robustness  

In outdoor applications, superhydrophobic surfaces need to survive harsh conditions. 

To investigate the mechanical resistance of our coating, sand impact tests were performed. 

Sand grained 300 to 500 um in diameter impinged the surface from a height of 40 cm, 

crresponding to an impinging energy of 1.1 × 10-4 J per grain. The silica shells were not 

sufficiently robust to completely resist sand impact as shown in Fig. 5-3. As time 

increased at initial stage, a cave formed on the impacted area (Fig. 5-3a and b), after 210s, 

the silica shell was removed and the substrate was exposed (Fig. 5-3c and d). However, 

zooming into the cave almost unaltered the micro-morphology. Owing to the silica shell’s 

self-similarity, the surface kept its superhydrophobicity until the silica shell was 

completely removed after extended impact. The mechanical durability depended on the 

amount of sand impinging per unit of time, the size of the grains, the height of fall, and 

the thickness of the silica shell. The mechanical stability would increase with the 

thickness of the silica shell, but at the expense of the coating’s transparency. 

 

Fig. 5-3 The robustness quantified by sand abrasion: (a) silica shell coated quartz wafer 

before sand abrasion, (b) and (c) silica shell coated quartz wafer during sand abrasion, 

(d) silica shell coated quartz wafer after sand abrasion. 
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5.3.3 Oil-water separation 

The superhydrophobic silica shell can also be utilized as an oil−water separation 

membrane on mesh owing to its durable superhydrophobicity under oil. Therefore, we 

used the method mentioned above to modify a superhydrophobic silica shell on a stainless 

steel mesh; then the modified mesh was used to separate an oil−water mixture. 

Dichloromethane−water mixture was used as a representative to investigate the oil−water 

separation efficiency of the separation device, and the separation efficiency was studied 

as shown in Fig. 5-4,5 and 6. 

After fabricating the modified mesh as separation device and demonstrating the 

superhydrophobicity, the as-prepared device was placed between a split type funnel 

forming an oil-water separation device; then the device was placed on the top of a flask 

as shown in Fig. 5-4a. Meanwhile, the oil−water mixture was prepared by mixing the 

same volume (5 mL) of blue-dyed dichloromethane and red-dyed deionized water, 

forming separated top and bottom layers. Then the oil−water mixture was poured rapidly 

into the device; dichloromethane soon sank to the bottom of the device because its density 

was higher than that of water. Driven by gravity only, blue-dyed dichloromethane was 

immediately taken up by the device, penetrated through the modified mesh, and finally 

swirled into the flask (Fig. 5-4b and c). There was not any leaked water in the flask; this 

was because of the superhydrophobicity of the modified mesh even if it was immersed in 

oil. It was shown in Fig. 5-4d that the red water layer was still retained in the device. In 

addition, after the oil-water separation course, modified mesh was taken out from the 

device and the superhydrophobicity was tested. Water droplets did not wet or even 

contaminate the surface, reconfirming that the modified surface would retain 

superhydrophobicity even after oil-water separation. Meanwhile, this phenomenon 

implied that the as-prepared device could be reused. 
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Fig. 5-4 A selective oil-water separation using the modified stainless steel mesh: (a) The 

oil water mixture and separation device were prepared, then (b) the mixture was poured 

into the device. (c) Oil passed through the modified stainless steel mesh, (d) while water 

was prevented from flowing down and retained above. 

The theory created by Cassie and Baxter,[25] has been well-known as a classic theory, 

which indicates the superhydrophobicity formed from the water-air-solid interface. The 

air molecules locked in micro-nanostructures, water, and rough surface form the water-

air-solid system. Similarly, the wetting behavior in the water-oil-solid system could also 

be explained by this strategy. The oil-water mixture was separated successfully only 

dependent on gravity by taking advantage of the feature of the superhydrophobic surface, 

which has indicated easy operation and low energy consumption of this strategy. 

It is very important to spread the application of the asprepared device to different oil-

water mixtures because of the oil spill accidents throughout the world, such as 

dichloromethane, toluene, gasoline, and chloroform. The separation property of the as-

prepared device could be quantitatively described according to the separation efficiency, 

which was defined by water content in oil after separation. To investigate the oil-water 

separation, four kinds of mixtures were separated by the as-prepared device. Oil instantly 

penetrated through the modified mesh while water was retained above. The water content 

in oil after first separation was measured by Karl Fischer moisture titrator. As can be seen 

from Fig. 5-5, for different oil-water mixtures, water content in oil differed from one 
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another significantly before separation, because the solubility of oil in water exist large 

difference. The water contents in oil (dichloromethane, toluene, gasoline and chloroform) 

before separation were respectively 52 ppm, 48 ppm, 77 ppm and 99 ppm. Because of the 

better compatibility with water, chloroform showed a relatively high water content in oil. 

As can be observed in Fig. 5-6a, the values of water content in oil (dichloromethane, 

toluene, gasoline and chloroform) were respectively 770 ppm, 262 ppm, 133 ppm and 

148 ppm. The water contents in oil of all the oil types showed substantial growth after 

separation, but the growth range differed from each other. Among all of the oil types, the 

water content growth range of dichloromethane showed the maximum value and that of 

chloroform showed the minimum value. This was because the different surface tension of 

dichloromethane and chloroform. The chloroform has relatively high viscosity and 

surface tension, when permeating through the separation device, chloroform coated on 

the inorganic modified mesh forming a chloroform liquid membrane due to its 

superoleophilicity. And then, the chloroform membrane with high surface tension 

performed a better bearing capacity of water compared with other oils where water was 

hard to leak through the device. For dichloromethane, the result was the opposite- 

dichloromethane performed relatively low bearing capacity of water due to its low surface 

tension. Therefore, the water content in dichloromethane after separation was high. 

Meanwhile, the flow rates of oil were calculated by measuring the passing time of the oil 

phase and shown in the same figure. The highest flow rates of 1.4 and 0.991 mh−1 were 

achieved from the gasoline-water and toluene-water mixtures, respectively, indicating the 

oil kinds had great influence on the penetrating rate. For chloroform, after stirring its 

mixture thoroughly, the oil-water mixture took a longer time to stratify. As a result, the 

oil flow rate was relatively low (0.586 mh-1). Next, the as-prepared device was reused to 

separate a gasoline-water mixture for 6 times to verify its repeatability, and we had 

realized the tests of water content and flow rate for every circle. During the 6 cycle tests, 

the flow rate was about 1.0 mh-1 (Fig. 5-6b) and remained stable, and for each cycle of 

separation, the water content in oil was below 300 ppm (Fig. 5-6b), which was because 



91 

the superhydrophobic modified mesh only allowed oil penetrating. The results 

demonstrated that the superhydrophobic surfaces performed well, not only in the 

robustness and transparence but also in oil-water separation application, exhibiting 

integrated functions. 

 

Fig. 5-5 Water content in oil of different oil types before oil-water separation 
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Fig.5-6 Oil-water separation results of the as-prepared device. (a) Water content in oil 

and flow rate for penetrating a series of immiscible oil-water mixtures. (b) Water 

content in oil and oil flow rate for penetrating gasoline-water mixture through the as-

prepared device with different cycle index.  

5.4 Conclusions 

In summary, the author have developed a versatile and simple strategy to fabricate 

robust, transparent and superhydrophobic surface on quartz wafer and stainless steel mesh 

by a straightforward template method. Candle soot was used as rough surface template 

and then the roughness structure was reinforced by a filmy silica shell through the 
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chemical vapor deposition of SiCl4. Further, the soot-silica shell coated substrate was 

calcined to remove template. Finally, the silica shell surface was modified into 

superhydrophobic and used for oil-water separation. The wettability of substrate surface 

before and after modification was tested. Meanwhile, the robustness, transparence and 

oil-water separation efficiency were investigated. The results revealed that the robust, 

transparent and superhydrophobic surface was successfully fabricated and the CA was 

152.1°. The reinforced surface showed robustness against 210s sand abrasion with height 

of 40cm. In addition, the oil-water separation device revealed excellent separation 

efficiency and reusability in oil-water separation. The oil-water separation device has 

realized 6 times reuses and still remained excellent oil-water separation efficiency. It is 

believed that this superhydrophobic surface can be simply, flexibly, and robustly used in 

large-scale industrial applications where maintain harsh, transparent and oily 

environments, such as external wall coating, touch screen and oil-water separation 

material.  

 

 



94 

References 

[1] Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired Surfaces with Superwettability: 

New Insight on Theory, Design, and Applcations. Chem. Rev. 2015, 115, 8230−8293. 

[2] Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; 

Jiang, L.; Zhu, D. B. Super-Hydrophobic Surfaces: from Natural to Artificial. Adv. Mater. 

2002, 14, 1857−1860. 

[3] Maguire-Boyle, S. J.; Barron, A. R. A New Functionalization Strategy for Oil/Water 

Separation Membranes. J. Membr. Sci. 2011, 382, 107−115. 

[4] Alexander, S.; Eastoe, J.; Lord, A. M.; Guittard, F.; Barron, A. R. Branched 

Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived 

Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 660−666. 

[5] Gao, X. F.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J. H.; Yang, B.; Jiang, L. The 

Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues 

Prepared by Soft Lithography. Adv. Mater. 2007, 19, 2213−2217. 

[6] Ye, C. Q.; Li, M. Z.; Hu, J. P.; Cheng, Q. F.; Jiang, L.; Song, Y. L. Highly Reflective 

Superhydrophobic White Coating Inspired by Poplar Leaf Hairs toward an Effective 

“Cool Roof. Energy Environ. Sci. 2011, 4, 3364−3367. 

[7] Barthlott, W.; Neinhuis, C. Purity of The Sacred Lotus, or Escape from Contamination 

In Biological Surfaces. Planta. 1997, 202, 1−8. 

[8] Nosonovsky, M.; Bhushan, B. Energy Transitions in Superhydrophobicity: Low 

Adhesion, Easy Flow and Bouncing. J. Phys.: Condens. Matter. 2008, 20, 395005. 

[9] Pan, Q.; Wang, M.; Wang, H. Separating Small amount of Water and Hydrophobic 

Solvents by Novel Superhydrophobic Copper Meshes. Appl. Surf. Sci. 2008, 254, 

6002−6006. 

[10] Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J. A.; Krupenkin, T.; Aizenberg, 

J. Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water 

Droplets. ACS Nano 2010, 4, 7699−7707. 



95 

[11] Shi, F.; Niu, J.; Liu, J.; Liu, F.; Wang, Z.; Feng, X. Q.; Zhang, X. Towards 

Understanding Why a Superhydrophobic Coating is Needed by Water Striders. Adv. 

Mater. 2007, 19, 2257−2261. 

[12] Ou, J.; Rothstein, J. P. Direct Velocity Measurements of the Flow Past Drag-

Reducing Ultrahydrophobic Surfaces. Phys. Fluids 2005, 17, 103606. 

[13] Ju, G. N.; Cheng, M. J.; Shi, F. A PH-Responsive Smart Surface for the Continuous 

Separation of Oil/Water/Oil Ternary Mixtures. NPG Asia Mater. 2014, 6, e111. 

[14] Cheng, M. J.; Ju, G. N.; Jiang, C.; Zhang, Y. J.; Shi, F. Magnetically Directed Clean-

Up of Underwater Oil Spills Through a Functionally Integrated Device. J. Mater. Chem. 

A. 2013, 1, 13411−13416. 

[15] Ju, G. N.; Li, D. L.; Zhang, Y. J. Magnetically Driven Functionally Integrated Device 

for Continuous and Efficient Collection of Oil Droplets From Water. RSC Adv. 2016, 6, 

20559−20564. 

[16] Chen, B. Y.; Ju, G. N.; Sakai, E.; Qiu, J. H. Underwater Low Adhesive Hydrogel-

Coated Functionally Integrated Device by One- Step Solution-Immersion Method for Oil-

water Separation. RSC Adv. 2015, 5, 87055−87060. 

[17] Zimmermann, J.; Reifler, F. A.; Fortunato, G.; Gerhardt, L. C.; Seeger, S. A Simple, 

One Step Approach to Durable and Robust Superhydrophobic Textiles. Adv. Funct. 

Mater. 2008, 18, 3662−3669. 

[18] Zhu, L.; Shi, P.; Xue, J.; Wang, Y. Y.; Chen, Q. M.; Ding, J. F.; Wang, Q. J. 

Superhydrophobic Stability of Nanotube Array Surfaces under Impact and Static Forces. 

ACS Appl. Mater. Interfaces 2014, 6, 8073−8079. 

[19] Zhu, Q.; Chu, Y.; Wang, Z. K.; Chen, N.; Lin, L.; Liu, F. T.; Pan, Q. M. Robust 

Superhydrophobic Polyurethane Sponge as a Highly Reusable Oil-Absorption Material. 

J. Mater. Chem. A 2013, 1, 5386−5393. 

[20] Park, E. J.; Sim, J. K.; Jeong, M. G.Transparent and superhydrophobic films prepared 

with polydimethylsiloxane-coated silica nanoparticles. RSC Adv. 2013, 3, 12571-12576 

[21] Ebert, D.; Bhushan, B. Transparent, superhydrophobic, and wear-resistant surfaces 



96 

using deep reactive ion etching on PDMS substrates. J. Colloid Interface Sci., 2016, 481, 

82-90. 

[22] Rao, A. V.; Latthe,; Nadargi, D. Y. Preparation of MTMS based transparent 

superhydrophobic silica films by sol–gel method. J. Colloid Interface Sci., 2009, 2, 484-

490. 

[24] Patankar, N. A. On The Modeling of Hhydrophobic Contact Angles on Rough 

Surfaces. Langmuir 2003, 19, 1249−1253. 

[25] Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 

1944, 40, 546−551. 

  



97 

 

Chapter 6 Conclusions 
To handle serious oil spills, many strategies have been proposed to design novel 

materials for oil–water separation. In the past decades, bioinspired surfaces with 

superwettability have been explored and utilized in oil-water separation. The underwater 

superoleophobic and superhydrophobic-superoleophilic materials were usually used for 

oil-water separation. However, their application has been limited because the complex 

fabricating process, fragile roughness structure, easy to be polluted and lose efficacy. 

Therefore, this study has aimed on developing simple and versatile strategies to fabricate 

low cost and robust oil-water separation devices with superwettability. 

In Chapter 1, the research backgrounds, fundamental understandings of 

superwettability, research significance and research purpose were particularly described. 

In Chapter 2, the experimental section was presented. The experimental materials, 

methods and characterizations were particularly described in this chapter. 

In Chapter 3, the author develop a facile method for fabricating underwater low 

adhesive hydrogel-coated functionally integrated device to separate oil from mixtures 

with water. In particular, the commercially available nickel foams are functionalized by 

means of hydrogel coating. Compared with other preparation methods, the nickel foams 

coated by hydrogel are also a promising approach in oil-water separation. The technique 

is simple and easy to be scaled up, while the employed materials are inexpensive and 

some of them can be recycled. Therefore, I propose the use of the developed systems in 

the selective removal of little water from oil surface by means of a magnetic field, 

underwater superoleophobic, and water absorbing nickel foams from a distance toward 

the targeted areas with minimal energy consumption. By taking advantage of the 

superhydrophilic and underwater superoleophobic properties, I have realized the effective 

separation of oil-water mixtures, which demonstrated a re-collecting efficiency as high 

as 99.5%. What is more, it also can be reused 6 times and still had high separation 



98 

efficiency. The as-prepared device would provide a novel strategy for handling oil spills 

under various conditions and can be applied in other oil-water separating systems. 

In Chapter 4, the author have developed a versatile and simple strategy to fabricate 

robust, self-cleaning and superhydrophobic surfaces for both soft and hard substrates by 

a straightforward spraying method. This superhydrophobic surface remained its 

superhydrophobicity and self-cleaning property even under oil immersion. Meanwhile, it 

showed remarkable robustness against knife scratch and sandpaper abrasion. In particular, 

the surface still retained its superhydrophobicity even after 30 abrasion cycles with 

sandpaper. Because of the superhydrophobicity under oil immersion, this surface could 

also be used for oil-water separation as well as showed excellent separation efficiency. 

Further, the oil-water separation device has realized 6 times reuses and still remained 

excellent oil-water separation efficiency. It is believed that the superhydrophobic surface 

can be simply, flexibly, and robustly used in large-scale industrial applications where 

maintain harsh and oily environments, such as external wall coating and oil-water 

separation material. 

In Chapter 5, the author have developed a simple strategy to fabricate robust, 

transparent and superhydrophobic surface used for oil-water separation. Candle soot was 

used as rough surface template and then the roughness structure was reinforced through 

chemical vapor deposition of SiCl4. Further, the surface was modified into 

superhydrophobic and used for oil-water separation. The wettability of substrate surface 

before and after modification was tested. Meanwhile, the robustness and oil-water 

separation efficiency were investigated. The results revealed that the robust, transparent 

and superhydrophobic surface was successfully fabricated and the CA was 151.6°. The 

reinforced surface showed robustness against 210s sand abrasion with height of 40cm. 

Further, the oil-water separation device revealed excellent separation efficiency and 

reusability in oil-water separation. The oil-water separation device has realized 6 times 

reuses and still remained excellent oil-water separation efficiency.  
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In chapter 6, general conclusions of the research were made.  
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